Устройство и история развития телескопов. Астрономия — История создания телескопа




Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин

Астрономия – наука, изучающая звезды, планеты и другие небесные тела – получила огромный толчок к развитию благодаря изобретению телескопа.

Пользуясь этим прибором, ученые смогли рассмотреть множество интереснейших подробностей звездного неба – например, увидеть спутники Марса и Юпитера, открыть отдаленные от Солнца планеты, изучить закономерности и метеоритных потоков.

Люди пользуются телескопами и другими оптическими приборами более четырехсот лет и уже не представляют без них своей жизни. Но кто был изобретателем телескопа, и когда было сделано это изобретение?

Оптические линзы и увеличительная труба

Сегодня нам хорошо известно, что в основе конструкции телескопа лежит система оптических линз, собирающих и преобразующих пучки световых лучей. Задолго до того, как люди научились варить качественное стекло и шлифовать оптику, для создания линз использовались природные кристаллы.


Так, известно, что у древнеримского императора Нерона была увеличительная линза, сделанная из крупного кристалла изумруда. Нерон часто забавлялся разглядыванием через нее собеседников во время пиров или колесниц на бегах. Разумеется, такие оптические приспособления были баснословно дороги и доступны только высшей знати.

Совершенствование стекловарения дало возможность более плотно заняться изучением оптических законов. Идеи насчет использования оптических линз для наблюдения за небесными телами посещали еще Леонардо да Винчи, о чем свидетельствуют записи в его дневнике. Но только сто лет спустя они смогли воплотиться в реальность.

Наибольших успехов здесь удалось добиться голландским мастерам, изготовлявшим линзы для очков: достаточно вспомнить, что изобретателем микроскопа является голландец Левенгук. В начале XVII века была изобретена подзорная труба для рассматривания отдаленных предметов. Создателями этого важного инструмента являются сразу несколько мастеров – З.Янсен, Я.Метиус и И.Липперсгей.

Многие исследователи приписывают лавры изобретателя телескопа именно Липперсгею, который представил в 1608 году на суд Гаагского патентного учреждения свое изобретение, состоящее из трубки и вставленных внутрь нее двух линз.


Однако изобретение не было зарегистрировано, так как судьи решили, что его конструкция чересчур проста и не несет ничего нового.

Впрочем, прообраз рефлекторного телескопа, состоящего из вогнутой зеркальной поверхности и выпуклой линзы, был придуман за полтораста лет до него астрономом Томасом Диггесом. Это изобретение не было доработано до конца и поэтому надолго осталось забытым.

Телескоп Галилео Галилея

Первый настоящий телескоп был изготовлен в 1609 году итальянским математиком и астрономом Галилео Галилеем. Это была труба со вставленными внутрь оптическими очковыми линзами, комбинация которых давала увеличение до 30 раз.

Телескоп Галилея дал возможность совершенно нового подхода к изучению астрономических объектов. С его помощью гениальный итальянец открыл кратеры и горы Луны, кольцо Сатурна, а также открыл и описал четыре самых крупных спутника Юпитера и многие другие астрономические объекты.

С точки зрения современной науки телескоп Галилея – это простейший оптический прибор, какими в наше время пользуются только начинающие астрономы-любители. Однако на то время это был единственный действительно работоспособный телескоп, который позволял изучать небесные тела в недоступных человеческому глазу подробностях.


Неудивительно, что XVII столетие стало веком великих астрономических открытий, задавших науке о звездах то направление, по которому она движется вплоть до сегодняшнего дня.

Историко-астрономические исследования, XV / Отв. ред. Л.Е. Майстров - М., Наука, 1980

В.А. Гуриков

ИСТОРИЯ СОЗДАНИЯ ТЕЛЕСКОПА

История создания телескопа относится к числу интереснейших вопросов истории оптики. И хотя на эту тему написано немало ценных и обстоятельных работ , в истории создания телескопа еще немало «белых пятен». Как, например, объяснить, почему, несмотря на то, что линзы были известны еще 2500 лет до н. э. , а очки были введены в употребление в конце XIII в., понадобилось столько времени для того, чтобы расположить две линзы одна за другой (ведь первые сведения о практической конструкции зрительной трубы относятся к концу XVI - началу XVII вв.)? Для того чтобы понять причины, вызвавшие такую «задержку» в появлении телескопа, необходимо разобраться в процессе развития оптики и закономерностях появления первых оптических приборов.

Элементы «практической оптики» - зажигательное действие линз и зеркал - были известны еще в глубокой древности. До нашего времени сохранилось немало бесспорных свидетельств древних авторов о зажигательном действии стекол и зеркал. Таким способом, по-видимому, издревле получали «чистый» жертвенный огонь. О таком зажигании еще в V в. до н. э. как явлении всем известном упоминает Аристофан в комедии «Облака». Плиний старший и Сенека сообщают о зажигательном действии стеклянных шаров. В сочинении «О темпераментах» К. Гален писал: «И об Архимеде говорят, что он сжигал вражеские триеры» . Иоанн Цецем описывает зажигательные свойства зеркал Архимеда в своем сочинении «Тысячи» . Как представлял себе Вителло сожжение Архимедом вражеских кораблей, мы видим на гравюре, помещенной на обложке его книги «Перспектива» (рис. 1).

Долгое время вокруг этого исторического факта возникали споры. Упомянутая легенда была подтверждена экспериментальным путем в наши дни греческим инженером Иоаннисом Саккасом. В ноябре 1973 г. он провел серию опытов, в которых использовал в качестве зажигательных приборов комбинацию отполированных до зеркального блеска металлических щитов. По сигналу Саккаса солдаты, державшие щиты, направляли солнечные лучи, отраженные от этих щитов, на модели древнеримских кораблей. Саккасом было проведено пять опытов. В последнем опыте, проведенном 6 ноября 1973 г. в 12 ч., было использовано 70 щитов, а расстояние от моделей было 55 м. В течение двух-трех минут модели кораблей загорались .

Основные оптические явления - Прямолинейное распространение света, независимость световых пучков, отражение от зеркальной поверхности и преломление света на границе двух прозрачных сред - были установлены опытным путем Евклидом и Аристотелем. У Герона Александрийского мы находим, что «наука о видении делится на оптику, т. е. собственно учение о видении, диоптрику, т. е. учение о преломлении света, и катоптрику, т. е. учение об отражении». Все последующие ученые-оптики стали называть свои труды «Диоптрикой» или «Катоптрикой».

Оптики античности, хотя и проявляли живой интерес к природе и свойствам света, но оптических приборов как таковых не создали . Это было связано прежде всего с незнанием строения и функций глаза, да и вообще механизма зрения. Возможность получения действительных изображений при помощи оптических систем им также оставалась неизвестной .

Картина развития оптики резко изменилась в средние века, когда ученым (Альхазену и др.) удалось установить, что зрение вызывается внешними лучами, приходящими в глаз от предметов. В связи с этим Альхазен впервые ставит вопрос о получении действительных изображений от зеркал и преломляющих сред .

Однако несмотря на существование достаточного количества теоретических трудов по оптике, практическая оптика, особенно в части применения линз, развивалась крайне слабо. Взаимосвязи между наукой и практикой в области оптики, по сути дела, не существовало . Подтверждением этого явилось изобретение в Италии в конце XIII в. очков (чисто эмпирическим путем). «Действительным бесспорным достижением XIII в., - пишет С.И. Вавилов, - явилось изобретение очков в Италии и постепенное распространение их. О появлении очков в Италии в конце XIII в. сохранилось несколько вполне ясных свидетельств. Обилие документальных данных показывает, что изобретение привилось и обратило на себя внимание. Замечательно и вместе с тем печально, что ученые-оптики XIII в., много писавшие о преломляющих средах, по-видимому, не причастны к изобретению очков» .

Постараемся понять, какими, обстоятельствами было вызвано появление очков, которые Ф. Энгельс называл в числе важнейших изобретений XIII в.

Итальянские мастера XIII в. были известны во всем мире как искусные шлифовальщики и полировщики. В процессе своей работы они сталкивались с необходимостью подносить изделия своего труда близко к глазу (например, с целью контроля качества обработки поверхности материала). Поэтому изобретение ими очковых линз являлось вполне естественным: они облегчали их работу, давали возможность рассматривать даже мелкие детали изготовляемых ими изделий. И в то же время ученые-оптики XIII в. не только не способствовали изобретению очков, но просто не знали об их существовании. Между тем, - отмечает С.И. Вавилов, - дело шло не о мелочи, а о самом замечательном результате оптики за многие века ее существования не только в практическом смысле, но и в отношении теоретических перспектив. Если бы стал известен подлинный изобретатель очков, имя его, несомненно, занимало бы одно из самых почетных мест в истории науки о свете» .

Разберемся, почему случилось так, что очковые линзы были открыты не учеными, а ремесленником, случайно?; Почему ученые-оптики, имевшие к этому времени достаточный объем знаний, не только не участвовали в изобретении очков, но и считали это изобретение вредным: «Основная цель зрения - знать правду, линзы для очков дают возможность видеть предметы большими или меньшими, чем они есть в действительности; через линзы можно увидеть предметы ближе или дальше, иной раз, кроме того, перевернутыми, деформированными и ошибочными, следовательно, они не дают возможности видеть действительность. Поэтому, если вы не хотите быть введенными в заблуждение, не пользуйтесь линзами» . Такую рекомендацию ученые-оптики давали в связи с незнанием механизма и природы зрения. «Очки, - пишет. С.И. Вавилов, - несмотря на всю их удивительность для человека

XIV и XV вв. и практическую важность, не сделались основой дальнейшего развития оптики. Книги Альхазена, Вителло, Бэкона мирно покоились в монастырских и университетских библиотеках, в университетах читались оптические курсы как часть quadrivium (повышенного курса образования. - В. Г.), именитые люди исправляли свое зрение в старости очками, но оптическая наука в XIV и XV вв., если не говорить о перспективе, имевшей значение только для художников, стояла на месте .

Первые упоминания о телескопе встречаются у английского средневекового ученого Роджера Бэкона (1214- 1292). Он был хорошо знаком с достижениями арабской оптики и, в частности, с работами Альхазена. Бэкон был также ученым, провозгласившим совершенно новые принципы научного знания. Он гениально предвидит будущие успехи экспериментальной науки. С восторгом говорит он о будущей технике: «Расскажу о дивных делах природы и искусства, в которых нет ничего магического... Прозрачные тела могут быть так обделаны, что отдаленные предметы покажутся приближенными, и наоборот, так, что на невероятном расстоянии будем читать малейшие буквы и различать мельчайшие вещи, а также будем в состоянии усматривать звезды, как пожелаем» .

Читая эти строки, трудно себе представить, что почти 700 лет назад, во времена инквизиции, гениальный монах мечтал о телескопе! Его мечта была научной фантазией. Бэкон был противником магии: «Не надо прибегать к Магическим явлениям, когда силы науки достаточно, чтобы произвести действия», - писал он .

В трилогии, написанной Р. Бэконом по просьбе папы Климента IV «Opus minus» («Малый труд»), «Opus majus» («Большой труд») и «Opus tertium» («Третий труд») - много страниц посвящено оптическим темам, причем встречаются такие места, по которым можно предположить, что Бэкону были известны некоторые конструкции зрительных труб: «Таким образом, - пишет он, - увеличивая зрительный угол, мы будем в состоянии читать мельчайшие буквы с огромных расстояний и считать песчинки на земле, так как видимая величина обуславливается не расстоянием, а зрительным углом. Мальчик может казаться великаном, а взрослый горой» . Однако, по мнению С.И. Вавилова, такие строки на самом деле, вероятно, выражают только догадки и научные фантазии, которых не чуждался увлекающийся Doctor Mirabilis («Дивный доктор» - так звали Бэкона его современники - В. Г.), сообщавший читателю вместе с оптическими теоремами, например, сведения о летающих драконах и их пещерах» .

Мысли Р. Бэкона настолько опережали свою эпоху, что они не отразились на ходе развития современной ему науки, и впоследствии были преданы забвению.

Идеи создания телескопических систем встречаются далее в манускриптах Леонардо да Винчи. Камера и глаз - предметы многочисленных размышлений и опытов Леонардо. В его рукописях немало графических построений хода лучей в линзах, дается экспериментальный метод определения аберраций. Леонардо - бесспорный зачинатель фотометрии как точной измерительной науки. Перу Леонардо принадлежат рисунки станков для полировки вогнутых зеркал, он подробно рассматривает технологический процесс производства очковых линз. Леонардо первым делает попытку переноса естественнонаучного знания в прикладную область.

Из всего многообразия работ Леонардо в области оптики нас будет интересовать только один вопрос: была ли осуществлена Леонардо зрительная труба (телескопическое устройство)? «Несомненно, - пишет С.И. Вавилов, - что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял» .Постараемся восстановить действительный ход событий.

Так заканчиваются первые страницы истории телескопа. Вслед за ними будет еще немало ярких страниц (создание зеркального телескопа, изобретение ахроматической оптики и др.).

Появление и развитие телескопических систем в XVII в. вызвало подлинную революцию как в оптике, так и в астрономии. Собственно именно благодаря широкому практическому использованию телескопических систем родилась техническая оптика как наука, а в астрономии появились новые приборы (телескопы, гелиоскопы и др.), дающие возможность, с одной стороны, более глубоко изучать Вселенную, а с другой, - способствующие дальнейшему прогрессу в развитии технической оптики.

ЛИТЕРАТУРА

1. Riekher Rolf. Fernrohre und ihre Meister. - Berlin, 1957.

2. King H. C. The History of the Telescope. - London, 1955.

3. Danjon A. et Couder A. Lunettes et telescopes. - Paris, 1935, p. 1 et 581.

4. Kisa A. Das Glas im Altertum: 3 Bd. - Leipzig, 1908.

5. Feldhaus F. M. Die ältesten optischen Hilfsmittel. - In: Der Sternfreund, 1936, Nr. 1.

6. Galeni Claudii. Opera omnia: t. 1 / Ed. CG. Kühn. - Lipsiae, 1821.

7. Tetes Joahnis. Chiliades / Ed. Th. Kiessling. - Hildesheim, 1963.

8. Ευάγγελου Σ. Σταμάτη. Αρχιμηδους άπαντα. - Αθ·ηναΐ, 1974. ,9. Вавилов С.И. Собр. соч.: т. III. - M.: Изд-во АН СССР, 1956.

10. Opticae Thesaurus libri Septem, nu primum editi, a Federico Ris-nero Basileae per Episcopios, 1572.

11. Gurikov V. A. On the Study of interconnections between natural and technical sciences. - In: Acta historiae rerum naturalium nee non technicarum: Special Issue, 8. - Pragae, 1976.

12. Ронки Васко. Влияние оптики XVII в. на общее развитие науки и философии. - Вопросы истории естествознания и техники, 1964 г., вып. 16.

13. Кудрявцев П.С. История физики: ч. I. - М.: Учпедгиз, 1948.

14. Розенбергер Ф. История физики: ч. I, M. - Л.: ОНТИ, 1937.

15. Леонардо да Винчи. Избранные естественнонаучные произведения. - М.: Изд-во АН СССР, 1955.

16. Argentieri D. L"optica de Leonardo. - In: Leonardo da Vinci. Edi-zione curata della moztra di Leonardo da Vinci in Milano, 1939.

17. Timpanaro. Seb. Un errore d"interpretazione d"una pagina li Leonardo. - In: Scritti di storia e critica della Scienza. - Firenze, 1952.

18. Дорфман Я.Г. Всемирная история физики (с древнейших времен до конца XVIII века). - М.: Наука, 1974.

19. Galileo G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. X, p. 252.

20. Borellus P. De vero Telescopii inventore, cum brevi omnium cons-piciliorum historia... - In: Accesit etiam Centuria observationum microscopicarum. - The Hague, 1655.

21. Соболь С.Л. Очерки по истории микроскопии: Диссертация, представленная на соискание ученой степени доктора биологических наук. - Москва; Фрунзе, 1943.

22. Moll G. On the first invention of telescopes collected from the notes and papers of the late professor van Swinden. - In: Journ. of the Royal Institution, 1831, v. 1.

23. Huygens Chr. La dioptrique. - In: «Oeuvres completes»: v. XIII. - Hague, 1916.

24. Galilei G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. Ill, pars 1.

25. Galilei G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. VI.

26. Зоннефельд А. Оптические данные небесного телескопа Галилея. - Йенское Обозрение, 1962, № 6.

27. Ронки Васко. Галилей и Торричелли - мастера точной оптики. - Труды Института истории естествознания и техники АН СССР; т. 28. - М.: Изд-во АН СССР, 1959.

28. Галилей Галилео. Звездный вестник. - Вопросы истории естествознания и техники, 1964, вып. 16, с. 3-28.

29. Галилей Галилео. Избранные труды: Т. I. - М.: Наука, 1964.

30. Белый Ю.А. Иоганн Кеплер (1571-1630). - М.: Наука, 1971.

31. Kepler I. Gesammelte Werke... - München, 1937, Bd. IV.

32. Correspondense of Scientific Men of the 17th Gentry, 1841, letter XX.

33. Scheiner Chr. Described and illustrated in Scheiners. - In: «Rosa Ursina sive sol etc. Bracciano», 1630.

придуманы людьми несколько столетий назад, однако их точное происхождение пока остаётся предметом спора учёных. Достоверно известно, что в начале 17 века, а именно в 1608 году, голландский изготовитель очков Ханс Липперсхей (Hans Lipperhey) подал заявку на патент зрительной трубы, по сути представлявшей собой примитивный . Липперсхей обычно считается изобретателем телескопа, но есть вероятность, что он был не первым человеком, догадавшимся, что труба с вогнутой линзой на одном конце и выпуклой линзой на другом может увеличивать далёкие объекты.

Рефрактор Галилея (1609г)

Несмотря на то, что был изобретён другим человеком, Галилео Галилей (Galileo Galilei) усовершенствовал его, значительно увеличив его возможности. Помимо этого, Галилей первым понял, что можно использовать не только для зрительного приближения далёких объектов на Земле, но и для изучения неба.

На картинке изображён Галилей, демонстрирующий один из своих телескопов правителям Венеции в августе 1609г. В течение нескольких лет после этого Галилей сделал ряд крупных наблюдений, в том числе открыл четыре крупных спутника Юпитера.

Отражающий Ньютона (1668г)


Вместо стеклянных линз, преломляющих лучи света, Исаак Ньютон (Isaak Newton) использовал изогнутые зеркала, также способные собирать или рассеивать свет в зависимости от формы. Конструкция на основе зеркал позволяет увеличивать объекты намного сильнее, чем это возможно с линзами. Кроме того, использование зеркал решает проблему хроматической аберрации, явления, из-за которого разные части спектра преломляются по-разному, что вызывает искажение изображения.

Однако из-за плохого качества зеркала первый отражающий Ньютона довольно сильно искажал и затемнял изображение. Отражающие стали популярны среди астрономов более чем через сто лет, когда появились зеркала, лучше отшлифованные и поглощающие меньше света.

Гринвичская королевская обсерватория (Royal Greenwich Observatory) с 1675 года является основной астрономической организации Великобритании. Она была организована королём Карлом II для навигационных нужд и сопутствующих исследований и размещена в Гринвиче, предместье Лондона. В то время Англия была крупнейшей морской державой, которой были необходимы возможно более точные инструменты для определения положения корабля, навигации на море, картографии и т.д. Меридиан, проходящий через Гринвич, решили считать нулевым в Великобритании и её колониях, а с 1884 года от него исчисляется поясное время во всём мире.

Здесь, в Гринвичской обсерватории, в 1676г приступил к наблюдениям за звездами и Луной первый королевский астроном Джон Флемстид (John Flamsteed). К концу XIX века Гринвичская обсерватория имела 76см рефлектор, 71см, 66см и 33см рефракторы и множество вспомогательных инструментов. В 1953г часть обсерватории была перенесена на 70км к юго-западу, в позднесредневековый замок Хёрстмонсо.

Великий русский ученый М.В.Ломоносов не только изобрел и построил более десятка принципиально новых оптических приборов, но и создал русскую школу научной и прикладной оптики. Среди его изобретений был , позволяющий видеть ночью и названный Ломоносовым "ночезрительной трубой", и новый тип отражательного телескопа, который позднее был использован Гершелем в его знаменитом телескопе.

Под руководством Ломоносова в 1761г оптик Иван Иванович Беляев изготовил "небесную трубу" длиной больше 12м, с большими металлическими зеркалами и линзой-объективом. Эта зрительная труба, будучи неподвижной, позволяла наблюдать за двигающимися звёздами и планетами. Позднее, в 1764г, тот же Беляев по чертежам Ломоносова сделал три трубы, предназначенные для сумеречного времени. Эти трубы имели латунный корпус и по четыре стекла. До того "ночезрительные трубы" считались невозможными, и идея Ломоносова высмеивалась в научных кругах.


Первый собственный Джон Гершель (John Frederick William Herschel) построил в 1774г, взяв за основу идеи и расчёты Ломоносова (по другим данным, Гершель и Ломоносов независимо друг от друга придумали оптические системы с одинаковыми принципами работы). Гершель несколько раз улучшал конструкцию телескопа, построив в итоге 20-футовый (6м) . Это был довольно громоздкий инструмент, для обслуживания которого требовалось четыре рабочих. На протяжении нескольких десятилетий этот оставался крупнейшим в мире.

Гершель составил огромный каталог звёзд и туманностей, произвёл ценные наблюдения над планетами Солнечной системы, в частности, в 1781г подтвердил, что Уран является планетой, а не звездой, а также открыл два спутника Урана и два спутника Сатурна. Сын Гершеля также активно занимался небесной оптикой и провёл несколько лет в Южной Африке, где построил аналогичный для изучения неба Южного полушария.

Пулковская обсерватория (полное официальное название "Главная (Пулковская) астрономическая обсерватория Российской академии наук", сокращённое - ГАО РАН) в настоящее время является основной астрономической обсерваторией РАН. Она расположена в 19км к югу от Санкт-Петербурга на Пулковских высотах.

Торжественное открытие обсерватории, созданной по решению Петербургской Академии наук, состоялось 7 (19) августа 1839г. Созданием обсерватории руководил выдающийся учёный-астроном Василий Яковлевич Струве, который и стал её первым директором. В Пулковской обсерватории находился один из самых больших на тот момент в мире рефракторов (38см). Как и Гринвичская, Пулковская обсерватория предназначалась для развития навигации и для исследования неба, геодезических измерений и т.д. В 1847 году директор Гринвичской обсерватории написал, что ни один астроном не может считать себя астрономом, если он не познакомился с Пулковской обсерваторией. До 1884 года все географические карты России имели точкой отсчёта Пулковский меридиан. Обсерватория, практически разрушенная во время Великой Отечественной войны, была восстановлена и вновь открыта в 1954г.

На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений.

Крымская астрофизическая обсерватория была основана в начале XX века возле поселка Симеиз на горе Кошка, как частная обсерватория любителя астрономии Николая Мальцова. В 1912 году она была передана в дар Пулковской обсерватории, после чего стала превращаться в полноценный научный центр, проводящий фотометрию звёзд и малых планет. В 1926 году в Крымской обсерватории был установлен метровый английский рефлектор, один из крупнейших рефракторов того времени. Крымская обсерватория, как и Пулковская, была практически полностью уничтожена во время Второй Мировой войны, позднее восстановлена и усовершенствована.

Сейчас Крымская обсерватория представляет собой развитый научно-исследовательский комплекс, в котором ведутся исследования по направлениям Физика звёзд и галактик, Физика Солнца, Радиоастрономия, Гамма-астрономия, Экспериментальная астрофизика, Оптическое производство. Сотрудниками Крымской обсерватории открыто около 1300 астероидов и 3 кометы. В настоящее время обсерватория находится под угрозой уничтожения из-за начавшейся в марте 2009 года противозаконной застройки ее территории коттеджным поселком с развлекательными комплексами.

200-дюймовый Хейла (1948г)


Джордж Эллери Хейл (George Ellery Hale), которого вполне можно назвать фанатом астрономии, в 1908г построил 60" на горе Вильсон, к северо-востоку от Лос-Анджелеса. в 1917г там же был установлен 100" Вильсона, который в течение 30 лет был самым большим телескопом в мире. Но Хейлу не хватало 100" телескопа, он хотел построить раза в два больше размером. В 1928г Хейл начал продвигать идею создания 200" телескопа. Он сумел заручиться финансовой поддержкой чикагского миллионера Чарлза Йеркса и на горе Паломар, к югу от Лос-Анджелеса, был построен 200" (5.1м) Хейла. Его строительство было завершено в 1948г, через 10 лет после смерти Хейла. Этот на протяжении 10 лет оставался крупнейшим в мире.

В телескопе Хейла использованы гигантские зеркала, изготовленные из специального нового стекла Pyrex, которое не меняет форму и размеры из-за колебаний температуры. Зеркало в нижней части трубы телескопа отражает свет звёзд, кабина наблюдателя находится наверху. Дополнительное зеркало может отражать свет через отверстие в центре основного зеркала.

Космический Хаббл (Hubble, 1990г)

Телескоп Хаббл был назван в честь известного астронома Эдвина Хаббла (Edwin Powell Hubble). Этот учёный оказал огромное влияние на проблему определения размеров нашей Вселенной и сформулировал закон: "галактики разлетаются со скоростью пропорциональной расстоянию между ними". Кстати, многие наблюдения Хаббл проводил на телескопах Хейла.

Запуск телескопа Хаббл, который состоялся в апреле 1990г, был настоящим прорывом для астрономии. Впервые был выведен за границу атмосферы и избавлен от искажений, возникающих из-за прохождения света через земную атмосферу. С помощью телескопа Хаббл более точно определены темпы расширения Вселенной, открыты многие новые звёзды и туманности, открыта тёмная материя, до того существовавшая только в расчётах отдельных физиков. Хаббл стал первым космическим объектом искусственного происхождения, который предназначен для проведения профилактики и текущего ремонта прямо в космосе. Пятый и пока последний ремонт Хаббла был проведён 11 мая 2009 года, следующий ремонт ориентировочно будет в 2014 году.

WMAP (Wilkinson Microwave Anisotropy Probe, 2001г)

WMAP представляет собой космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Строго говоря, это не , а исследовательский спутник. С помощью WMAP была создана первая чёткая карта неба в микроволновом диапазоне, уточнён возраст Вселенной (13.7млрд лет), измерен состав Вселенной (по крайней мере ближайшего участка). Примерно 72% Вселенной занимает тёмная энергия, 23% ─ тёмная материя, и только 5% обычная материя.

14 мая 2009 года был запущен преемник аппарата WMAP, спутник Планк (Planck). Теоретически чувствительность приборов Планка в 10 раз выше, а угловое разрешение в 3 раза выше, чем у WMAP.

Телескоп Свифт (Swift, 2004г)

Орбитальный рентгеновский Свифт был разработан для изучения быстрых космических явлений, называемых гамма-всплесками, которые, предположительно, возникают при смерти массивной звезды или объединении двух плотных объектов, таких как нейтронные звёзды. До запуска Свифта, состоявшегося в 2004 году, астрономам требовалось около 6 часов, чтобы после фиксации гамма-всплеска регистрировать все его параметры. Свифт способен начать записывать все данные о гамма-потоке не более чем через минуту после фиксации всплеска. Свифт уже зафиксировал данные сотен гамма-всплесков, а в апреле 2009 года обнаружил поток гамма-излучения, который дошёл до нас от наиболее отдалённого космического объекта из всех зафиксированных до сих пор.

Благодарим ресурсы NewScientist , Astronomer.ru , Wikipedia за предоставленную информацию.

Министерство образования Оренбургской области

Государственное Образовательное Учреждение Начального Профессионального Образования Профессиональное Училище - № 17

РЕФЕРАТ НА ТЕМУ:

« Телескопы и история их создания »

Разработал:

Учащийся 1 курса гр. №2

Подкопаев Эдуард

Руководитель:

Обухова Н.С.

Абдулино,2010


Введение………………………………………………………………….2

1.1 История создания первых телескопов…………………………….5

1.2.Современные виды телескопов ……………………..…………….8

2. Глава 2………………………………………………………………….12

2.1 Домашний телескоп………………………………………………..12

Заключение…………………………………………………..…………13

Список используемой литературы……………………………………14

Приложения……………………………………………………………..15

Введение

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

А.С.Пушкин

Телеско́п (от др.-греч. τῆλε - далеко + σκοπέω - смотрю) - прибор, предназначенный для наблюдения небесных светил. Действительно, это оптическое устройство представляет собой мощную зрительную трубу, предназначенную для наблюдения весьма удаленных объектов – небесных светил.

Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы, рентгеновские телескопы, гамма-телескопы. Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами, в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения. Также, телескоп может использоваться в качестве зрительной трубы, для решения задач наблюдения за удалёнными объектами.

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.

Объект исследования: различные виды телескопов.

Цель нашего исследования рассмотреть историю создания телескопа, создать домашний телескоп.

Задачи исследования: собрать и изучить теоретический материал о телескопе, используя все доступные источники информации.

Основная гипотеза – телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной.

Научная новизна нашей работы заключается в значимости телескопов на современном этапе развития науки и техники (в истории космических)

Практическая значимость: материалы исследования могут быть использованы на уроках физики, истории, географии, во внеклассной работе. Сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

Глава 1

1.1. История создания первых телескопов

Трудно сказать, кто первый изобрел телескоп. Годом изобретения телескопа, а вернее зрительной трубы, считают 1608 год, когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее в выдаче патента ему было отказано, в силу того что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент. Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году, в «Дополнениях в Вителлию», опубликованных в 1604 г. Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены еще в записях Леонардо да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделал стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).(2,136)

Известно, что еще древние употребляли увеличительные стекла. Дошла до нас легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой удаленные предметы на расстоянии кажутся близкими. (1, 46)

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика: Липерсчей, Меунус, Янсен. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических приборах быстро распространялись по Европе.

В Падуе в это время уже был широко известен Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. 7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером того же дня Галилей впервые направил построенный им телескоп на небо. (Приложение №1.рис.1)

Он увидел то, что ранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Юпитер, предстал перед глазами изумленного Галилея крошечным диском, вокруг которого вращались четыре необычные звездочки – его спутники. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. Она меняла свои фазы, что свидетельствовало об ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) ученый увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего сделал правильный вывод о вращении Солнца вокруг оси. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Несовершенство первого телескопа не позволило ученому рассмотреть кольцо Сатурна. Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка. Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно мировоззрение Коперника, были очень несовершенны. Уже при жизни Галилея на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был Иоганн Кеплер.(Приложение №1.рис.2)

В 1611 году в трактате «Диоптрика» он дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом – теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто его построил, был Шейнер, оппонент Галилея в их горячих спорах. К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения. Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. (Приложение №2)

Исаак Ньютон в тот период сумел дать новую жизнь телескопам с помощью зеркала. Первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года.

Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света. А Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. (Приложение №3.рис 1 и 2).

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени.

К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым. (Приложение 4).

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма. (Приложение 5)