Амитоз его стадии и значение. Амитоз - это что такое? Один из способов деления клетки. Митоз. Его сущность, фазы, биологическое значение. Амитоз




К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

Амитоз иногда ещё называют простым делением. Амитоз – прямое деление клетки путём перетяжки или инвагинации. При амитозе не происходит конденсация хромосом и не образуется аппарат деления. Амитоз не обеспечивает равномерного распределения хромосом между дочерними клетками. Обычно амитоз свойствен стареющим клеткам. Во время амитоза ядро клетки сохраняет строение интерфазного ядра, а сложной перестройки всей клетки, спирализации хромосом, как во время митоза, не происходит. Нет никаких доказательств равномерного распределения ДНК между двумя клетками при амитотическом делении, потому считают, что ДНК при таком делении может распределятся между двумя клетками неравномерно. Амитоз встречается в природе достаточно редко, в основном у одноклеточных организмов и у некоторых клеток многоклеточных животных и растений. Различают несколько форм амитоза:

  • равномерный, когда образуются два равных ядра;
  • неравномерный – образуются неодинаковые ядра;
  • фрагментация - ядро распадается на множество мелких ядер, одинаковой или нет величины.

Первые два типа деления вызывают образование двух клеток из одной. В клетках хряща, рыхлой соединительной и некоторых других тканях происходит деление ядрышек с последующим делением ядра путём перетяжки. У двухъядерной клетки появляется кольцевая перетяжка цитоплазмы, которая при углублении вызывает полное деление клетки на две. Пример . В хряще появляются изогенные группы, т. е. группы, происходящие из одной клетки. Такие клетки специализированы для выполнения определённых функций в организме, однако лишены возможности митотически делиться. В процессе амитоза в ядре происходит деление ядрышек с последующим делением ядра перетяжкой, цитоплазма так же делится перетяжкой.

Амитоз-фрагментация вызывает образование многоядерных клеток. В некоторых клетках эпителия, печени наблюдается процесс деления ядрышек в ядре, после чего всё ядро перешнуровывается кольцевой перетяжкой. Процесс этот заканчивается образованием двух ядер. Такая двухъядерная или многоядерная клетка уже не делится митотически, через некоторое время она стареет или гибнет. Таким образом, амитоз – это деление, которое происходит без спирализации хромосом и без образования веретена деления . Так же неизвестно синтезируется ли перед началом амитоза синтез ДНК и как происходит распределение ДНК между дочерними ядрами. Происходит ли предыдущий синтез ДНК перед началом амитоза и как она распределяется между дочерними ядрами – неизвестно. При делении определённых клеток иногда митоз чередуется с амитозом.

Биологическое значение амитоза Некоторые учёные считают этот способ деления клеток примитивным, другие относят его к вторичным явлениям. Амитоз по сравнению с митозом встречается значительно реже у многоклеточных организмов и может быть отнесён к неполноценному способу деления клеток, утративших способность к делению. Биологическое значение процессов амитотического деления:

  • процессы, обеспечивающие равномерное распределение материала каждой хромосомы между двумя клетками, отсутствуют;
  • образование многоядерных клеток или увеличение количества клеток.

Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). Политенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Процесс прямого деления без подготовки клетки называется амитозом. Впервые обнаружен в 1841 году биологом Робертом Ремаком. Термин ввёл гистолог Вальтер Флемминг в 1882 году.

Особенности

Амитоз - наиболее простой процесс, чем митоз или мейоз. Амитоз у эукариотов встречается довольно редко и более свойственен прокариотам. Это более быстрый и экономичный процесс, чем митоз. Наблюдается при стремительном восстановлении тканей. Амитозом делятся стареющие клетки и клетки ткани, которые в дальнейшем не будут делиться митотическим способом. Чаще всего это группа клеток, выполняющая строго определённые функции.

Амитоз наблюдается:

  • при увеличении корневого чехлика;
  • в клетках эпителия;
  • при росте лука;
  • в рыхлой соединительной ткани;
  • в хрящевой ткани;
  • в мускулатуре;
  • в клетках зародышевых оболочек;
  • при увеличении тканей водорослей;
  • в клетках эндосперма.

Основные особенности амитоза, по сравнению с митозом:

  • не сопровождается перестройкой всей клетки;
  • отсутствует веретено деления;
  • не происходит спирализация хроматина;
  • не выявляются хромосомы;
  • отсутствие репликации (удвоения) ДНК;
  • генетический материал распределяется неравномерно;
  • образовавшаяся клетка не способна к митозу.

Рис. 1. Митоз и амитоз.

Амитоз может происходить в опухолевых тканях. При неравномерном распределении генетического материала образуются дефектные эукариотические клетки с нарушенными внутриклеточными процессами.

Механизм

Амитоз - простой и редкий способ деления клеток, который мало изучен. Известно, что амитоз происходит за счёт простой перетяжки (инвагинации) кариолеммы - ядерной оболочки, что приводит к разделению родительской клетки на две части. Во время деления клетка находится в интерфазе, т.е. в состоянии роста и развития, никак не подготавливаясь к делению. Процесс амитоза описан в таблице.

ТОП-4 статьи которые читают вместе с этой

Не всегда при амитозе происходит цитокинез, т.е. деление тела клетки - цитоплазмы со всем её содержим. В этом случае образуется два и более ядра под одной оболочкой (многоядерная клетка), что может приводить к образованию колоний (дрожжи).

Рис. 2. Почкование дрожжей.

Значение

Амитоз имеет биологическое значение для быстрого восстановления тканей, размножения одноклеточных эукариотических и прокариотических организмов. Амитоз свойственен дрожжам, размножающимся бесполым путём (почкованием, делением), бактериям, лейкоцитам.

Бактерии и другие прокариоты не имеют ядра. Поэтому амитоз происходит несколько иначе. Сначала удваивается кольцевая ДНК, прикреплённая к складке цитоплазматической мембраны (мезосоме).

Затем между двумя закреплёнными на мезосомах ДНК образуется перетяжка, разделяющая клетку пополам.

Рис. 3. Деление прокариотов.

Что мы узнали?

Выяснили, чем митоз отличается от амитоза, как происходит прямое деление клетки, какую роль играет в природе. Амитоз - наиболее быстрый способ деления, что помогает восстановить повреждённые ткани за короткий промежуток времени. Характерно эукариотам (встречается редко) и прокариотам. Прямое деление клетки не требует подготовки: спирализации хромосом, удвоения ДНК, создания веретена деления. При таком способе клетка делится неравномерно: дочерние клетки могут отличаться по размеру и количеству генетической информации.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 305.

Существуют 3 способа деления клетки - митоз, амитоз, мейоз.

Митоз

Митоз - непрямое деление клетки. Митоз состоит из 4 фаз: профазы, метафазы, анафазы, телофазы.

Первая фаза - профаза. В профазе хромосомы спирализуются, укорачиваются, утолщаются и становятся видны. Каждая хромосома состоит из двух хроматид. Они соединены центромерой. К концу профазы ядерная оболочка и ядрышки растворяются. Центриоли расходятся к полюсам клетки. Образуется веретено деления (рис. 42, 2).

В метафазе хромосомы располагаются на экваторе. Хорошо видны число и форма хромосом. Нити веретена деления тянутся от полюсов к центромерам (42, 3).

В анафазе центромеры делятся и хроматиды (дочерние хромосомы) расходятся к разным полюсам. Движение хромосом проис-

ходит благодаря нитям веретена, которые, сокращаясь, растягивают дочерние хромосомы от экватора к полюсам (рис. 42, 4).

Митоз заканчивается телофазой. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуют- ся и становятся не видны (рис. 42, 5).

Образуется ядерная оболочка. В ядре формируется ядрышко. Происходит деление цитоплазмы. В клетках животных цитоп- лазма делится путем перетяжки, впячиванием мембраны от краев к центру.

Рис.42. Митоз. Ядро неделящейся клетки. Видно круглое ядрышко (1). 2 - профаза, 3 - метафаза, 4 - анафаза, 5 - телофаза.

В клетках растений в центре образуется перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растительных клеток образуется целлюлярная стенка (рис. 43).

В результате митоза каждая дочерняя клетка получает точно такие же хромосомы, какие имела материнская клетка. Число хро- мосом в обеих дочерних клетках равно числу хромосом материнской клетки.

Биологическое значение митоза

Митоз обеспечивает точную передачу наследственной информации каждому из дочерних ядер.

Митотический цикл

Митотический цикл - период между окончанием одного деления и началом последующего. Этот период в митотическом цикле клетки называют интерфазой.

Интерфаза имеет 3 периода:

. Пресинтетический G 1 . В этом периоде происходит синтез РНК, белка и рост клетки. Клетки имеют диплоидный (2n) набор хромосом и 2с генетического материала ДНК.

Рис. 43. Образование цитоплазматической мембраны в клетках животных (1, 2) и растений (3, 4).

Рис. 44. Митотический цикл диплоидной клетки.

G 1 - пресинтетический (постмитотический) период: S - синтетический период, G 2 - постсинтетический (премитотический) период. Митоз: П - профаза; М - метафаза, А - анафаза, Т - телофаза; n - гаплоидный набор хромосом; 2n - диплоидный набор хромосом; 4n - тетраплоидный набор хромосом; c - количество ДНК, соответствующее гаплоидному набору хромосом. Вне круга схематично показаны изменения хромосом в различные периоды жизненного цикла клетки.

. Синтетический (S). Происходит редупликация молекул ДНК и формируется вторая хроматида в хромосоме. Каждая хромосома состоит из двух хроматид и содержит 4с ДНК. Число хромосом не меняется (2n).

. В постсинтетическом периоде G 2 происходит синтез белков, необходимых для формирования веретена деления. Завершается удвоение центриолей. В молекулах АТФ накапливается энергия, необходимая для деления клетки. Клетка готова к делению. Ни содержание ДНК (4с), ни число хромосом (2n) не меняется.

Клетки имеют диплоидный набор хромосом. Каждая хромосома состоит из двух хроматид (рис. 44).

Вопросы для самоконтроля

1. Какое деление клеток называют митозом?

2. Какие клетки делятся митозом?

3. Из каких фаз состоит митоз?

4. Что происходит в профазе митоза?

5. Где располагаются хромосомы в метафазе митоза?

6. Что происходит в анафазе митоза?

7. Что происходит в телофазе митоза?

8. Какой набор хромосом имеют дочерние клетки, образующиеся в результате митоза?

9. Какое биологическое значение имеет митоз? 10.На какие периоды делится интерфаза?

11.Что происходит в пресинтетическом периоде интерфазы? 12.Что происходит в синтетическом периоде интерфазы? 13.Что происходит в постсинтетическом периоде интерфазы?

Ключевые слова темы «Митоз»

анафаза

веретено деления

деление

значение

интерфаза

информация

клетка

край

мембрана

метафаза

митоз

направление нить

окончание

перегородка

перетяжка

период

полюс

профаза

растение

редупликация

результат

рост

синтез

стадия

стенка

тело

телофаза

форма

хроматида

хромосома

центр

центриоли

центромера

экватор

ядерная оболочка ядро

ядрышки

Амитоз

Амитоз - прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Веретено деления не образуется. Амитоз приводит к появлению двух клеток, но очень часто в результате амитоза возникают двуядерные и многоядерные клетки.

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образуя два ядра, или имеет место множественное разделение ядра, его фрагментация. Ядра могут быть неравной величины.

Амитоз встречается в отживающих, дегенерирующих клетках, неспособных дать новые жизнеспособные клетки.

В норме амитотическое деление ядер встречается в зародышевых оболочках животных, в фолликулярных клетках яичника.

Амитотически делящиеся клетки встречаются при различных патологических процессах (воспаление, злокачественный рост и др.).

Вопросы для самоконтроля

1. Что такое амитоз?

2. Как происходит амитотическое деление?

3. В каких клетках происходит амитоз?

Ключевые слова темы «Амитоз»

Амитоз

Двуядерные клетки

Многоядерные клетки Фрагментация

Мейоз

Мейоз происходит при образовании гамет у животных и образовании спор у растений. Мейоз - редукционное деление. В результате мейоза происходит редукция числа хромосом с диплоидного (2n) до гаплоидного (n). Мейоз включает 2 последовательных деления. В каждом мейотическом делении выделяют 4 стадии: профазу, метафазу, анафазу и телофазу.

Профаза первого мейотического деления

Профаза первого мейотического деления наиболее сложная. В ней различают 5 стадий: лептотену, зиготену, пахитену, диплотену, диакинез.

В лептотену (I стадия) начинается спирализация хромосом. Хромосомы становятся видимыми в микроскоп как длинные и тонкие нити. Каждая хромосома состоит из двух хроматид. В ядре виден диплоидный набор хромосом (рис. 45).

Во II стадии профазы первого мейотического деления - зиготене - продолжается спирализация хромосом и происходит конъюгация гомологичных хромосом. Гомологичными называются хро- мосомы, имеющие одинаковую форму и размер: одна из них получена от матери, а другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой и каждая хромомера прилегает к гомологичной хромомере другой (рис. 46).

Рис 45. Лептотена.

Рис. 46. Зиготена.

III стадия - пахитена - стадия толстых нитей. Конъюгирую- щие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация хромосом. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговером (рис. 47).

В диплотене (IV стадия) возникают силы отталкивания между гомологичными хромосомами. Хромосомы, составляющие бива- лент, начинают отходить друг от друга в первую очередь в области центромер. При расхождении хроматид в некоторых местах обнаруживается явление перекреста и сцепления (рис. 48).

V стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом (рис. 49). Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

В профазе первого мейотического деления происходит 3 основных процесса: конъюгация гомологичных хромосом; образо- вание бивалентов хромосом или тетрад хроматид; кроссинговер.

Рис. 47. Пахитена.

Рис. 48. Диплотена.

Рис. 49. Диакинез.

Метафаза первого мейотического деления

В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки. К ним прикрепляются нити веретена деления (рис. 50).

Анафаза первого мейотического деления

В анафазе первого мейотического деления к полюсам клетки рас- ходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом (рис. 51).

Телофаза первого мейотического деления

В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. На короткое время образуется ядерная оболочка (рис. 52).

Рис. 50. Метафаза I.

Рис. 51. Анафаза I.

Рис. 52. Телофаза I.

Между первым и вторым делениями мейоза в клетке животных может быть короткая интерфаза. Во время интерфазы нет редупликации молекул ДНК.

Второе мейотическое деление происходит так же, как митоз.

Профаза второго мейотического деления

В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления (рис. 53).

Метафаза второго мейотического деления

В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. К ним подходят нити веретена деления (рис. 54).

Анафаза второго мейотического деления

В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам хроматиды, отделившиеся друг от друга. Хроматиды называются хромосомами (рис. 55).

Рис. 53. Профаза II.

Рис. 54. Метафаза II.

Рис. 55. Анафаза II.

Рис. 56. Телофаза II.

Телофаза второго мейотического деления

В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Формируется ядерная оболочка. Каждое ядро содержит гаплоидное число хромосом. Происходит деление цитоплазмы. Из исходной диплоидной клетки образуются 4 гаплоидных (рис. 56).

Таким образом, при мейозе происходит конъюгация и кроссинговер между участками гомологичных хромосом и редукция числа хромосом (рис. 57).

Вопросы для самоконтроля

1. Какое деление называется мейозом?

2. Что происходит при мейозе?

3. Сколько делений имеет мейоз?

4. Что происходит в профазе первого деления мейоза?

5. Что происходит в метафазе первого деления мейоза?

6. Что происходит в анафазе первого деления мейоза?

7. Какой набор хромосом имеют клетки в телофазе первого деления мейоза?

8. Что происходит в профазе второго деления мейоза?

9. Что происходит в метафазе второго деления мейоза? 10.Что происходит в анафазе второго деления мейоза? 11.Что происходит в телофазе второго деления мейоза? 12.Сколько клеток образовалось в результате мейоза? 13. Какой набор хромосом они имеют?

Рис. 57. Сравнение митоза и мейоза.

Ключевые слова темы «Мейоз»

анафаза

биваленты

веретено

гаметы

гаплоидный

деление

диплоидный

животные

интерфаза

конъюгация

кроссинговер

мейоз

метафаза

молекула

нить

область

обмен

оболочка

плечо хромосомы

полюс

профаза

растения

редукция

редупликация

результат

спирализация

споры

телофаза

участок

хроматида

хромосома

центриоли

центромера

экватор

Амитоз – прямое деление клеток. Амитоз встречается у эукариот достаточно редко. При амитозе ядро начинает делиться без видимых предварительных изменений. При этом не обеспечивается равномерное распределение генетического материала между дочерними клетками. Иногда при амитозе не происходит цитокинеза, то есть деления цитоплазмы, и тогда образуется двухъядерная клетка.

Рисунок – амитоз в клетках

Если же все-таки произошло деление цитоплазмы, то велика вероятность того, что обе дочерние клетки будут неполноценными. Амитоз чаще встречается в опухолевых или отмеряющих тканях.

При амитозе, в отличие от Митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки - цитотомии, как правило, не происходит; обычно амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рисунок – Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение амитоза осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно амитоз следует за Эндомитозом. В большинстве случаев при амитозе делится только ядро и возникает двуядерная клетка; при повторных амитозах. могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки - результат амитоза. (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы.

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Дву- и многоядерные клетки отличаются от одноядерных диплоидных большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток дву- и многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об амитозе как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму.

Во время амитоза клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём амитоза. Представления об амитозе как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать амитоз как внутриклеточную регулятивную реакцию.

Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями . Клетки становятся полиплоидными.

Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или обработать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратится. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полиплоидные клетки могут из стадии G 1 переходить в S-период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 n числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных диплоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 n. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными диплоидными клетками. Эти клетки являются результатом соматической полиплоидии. Часто это явление называют эндорепродукцией - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Существует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности веретена деления. Наконец, нарушения цитотомии также могут прекратить деление, что приведет к появлению двуядерных и полиплоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митотического типа. Часто такой тип эндорепродукции без митотической конденсации хромосом встречается у беспозвоночных животных, обнаруживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень полиплоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-105 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образовавшейся в результате редупликации ДНК без вступления клеток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличение плоидности путем политении. При политении в S-периоде при репликации ДИК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл репликации, снова удваиваются и не расходятся. Постепенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Последнее обстоятельство необходимо подчеркнуть, так как такие гигантские политенные хромосомы никогда не участвуют в митозе, более того - это истинно интерфазные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по размерам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хроматид - по объему политенные хромосомы дрозофилы в 1000 раз "больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее конденсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объединение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клетках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т.д. Описаны политенные хромосомы в макронуклеусе инфузории стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках достигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междисковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хроматина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дисков за счет их деконденсации и разрыхления. В пуфах выявляется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хромосомах, и в процессе развития организма существует определенная последовательность в их появлении и исчезновении на генетически различных участках хромосомы. Эта последовательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называемые кольца Бальбиани, который описал их 100 лет тому назад.

Ознакомление с информацией, содержащейся в этой статье, позволит читателю узнать об одном из способов клеточного деления - амитозе. Мы выясним особенности протекания данного процесса, рассмотрим отличия от других видов деления и многое другое.

Что такое амитоз

Амитоз - это клеточное деление прямого типа. Данный процесс происходит благодаря обычному на две части. Однако он может упускать фазу формирования веретена для деления. А перешнуровка происходит без конденсации хроматинов. Амитоз - это процесс, свойственный клеткам животных и растений, а также простейшим организмам.

Из истории и исследований

Роберт Ремак в 1841 году дал описание процесса амитоза впервые, однако сам термин возник гораздо позже. Уже в 1882-м гистолог и биолог немецкого происхождения Вальтер Флемминг предложил современное название самого процесса. Амитоз клетки в природе является относительно редким явлением, но зачастую он может происходить, так как является необходимым.

Особенности процесса

Как происходит деление клеток? Амитоз чаще всего возникает в клетках, имеющих пониженную митотическую активность. Таким образом, множество клеток, которые должны погибнуть в результате старости либо изменений патологического характера, могут оттянуть свою кончину на какое-то время.

Амитоз - это процесс, в котором состояние ядра в период интерфазы сохраняет свои морфологические признаки: ядрышко отлично видно, как и его оболочку, ДНК не реплицируется, хроматин - белковый, ДНК и РНК не спиралезируются, а выявление хромосом в ядре клетки эукариотов отсутствует.

Существует непрямое деление клетки - митоз. Амитоз, в отличие от него, позволяет клетке после деления сохранить свою активность как функционирующего элемента. Веретено деления (структура, предназначенная для хромосомной сегрегации) при амитозе не формируется, однако ядро все равно делится, и следствием данного процесса является случайное распределение наследственной информации. Отсутствие цитокинетического процесса в результате приводит к воспроизведению клеток с двумя ядрами, которые в будущем не смогут вступать в типичный цикл митоза. Многократное повторение амитоза может привести к образованию клеток с множеством ядер.

Современное положение

Амитоз как понятие стал возникать во множестве учебников еще в 80-х годах двадцатого века. На сегодняшний день существуют предположения о том, что все процессы, которые ранее подкладывали под это понятие, на самом деле являются неверно интерпретированными результатами исследований на плохо подготовленных микропрепаратах. Ученые полагают, что явление клеточного деления, сопровождающееся разрушением последних, могло привести к тем же неверно понятым и истолкованным данным. Однако некоторые процессы деления эукариотических клеток нельзя отнести ни к митозу, ни к мейозу. Ярким примером и подтверждением тому служит процесс деления макронуклеуса (ядро клетки инфузории, крупное по размерам), во время которого сегрегация некоторых участков хромосом происходит, несмотря на то что веретено для деления не образуется.

Чем же обусловливается осложнение изучения процессов амитоза? Дело в том, что это явление сложно определить по его морфологическим признакам. Такое определение является ненадежным. Неспособность четко определить по знакам морфологии процесс амитоза основывается на том, что не всякая ядерная перетяжка является признаком самого амитоза. И даже гантелевидная ее форма, которая четко выражается в ядре, может относиться лишь к переходящему типу. Также перетяжки ядра могут быть следствием ошибок в явлении предшествующего деления митозом. Чаще всего амитоз происходит сразу после эндомитоза (способ удвоения хромосомного числа без деления как клетки, так и ее ядра). Обычно процесс амитоза приводит к удвоению Повторение данного явления создает клетку с множеством ядер. Таким образом, амитоз создает клетки с хромосомным набором полиплоидного типа.

Заключение

Подведя итоги, можно сказать, что амитоз - это процесс, во время которого клетка делится прямым типом, то есть происходит деление ядра на две части. Сам процесс не способен обеспечить клеточное деление на равные, идентичные половины. Это касается и информации о наследственности клетки.

Этот процесс имеет ряд резких отличий от поэтапного деления путем митоза. Основным различием в процессах амитоза и митоза является отсутствие разрушения оболочки ядра и ядрышка при амитозе, а также протекание процесса без образования веретена, обеспечивающего деление информации. Цитотомия в большинстве случаев не делится.

В настоящее время нет исследований современной эпохи, которые бы могли четко выделить амитоз как форму дегенерации клеток. Это же относится и к восприятию амитоза как способа клеточного деления из-за наличия очень малого количества деления целого клеточного тела. Потому амитоз, возможно, лучше относить к регулятивному процессу, протекающему внутри клеток.