Правила сравнения дробей с разными знаменателями. Сравнение дробей




В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.

Для начала напомню определение равенства дробей:

Дроби a /b и c /d называются равными, если ad = bc .

  1. 5/8 = 15/24, поскольку 5 · 24 = 8 · 15 = 120;
  2. 3/2 = 27/18, поскольку 3 · 18 = 2 · 27 = 54.

Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:

  1. Дробь a /b больше, чем дробь c /d ;
  2. Дробь a /b меньше, чем дробь c /d .

Дробь a /b называется большей, чем дробь c /d , если a /b − c /d > 0.

Дробь x /y называется меньшей, чем дробь s /t , если x /y − s /t < 0.

Обозначение:

Таким образом, сравнение дробей сводится к их вычитанию. Вопрос: как не запутаться с обозначениями «больше» (>) и «меньше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:

  1. Расширяющаяся часть галки всегда направлена к большему числу;
  2. Острый нос галки всегда указывает на меньшее число.

Часто в задачах, где требуется сравнить числа, между ними ставят знак «∨». Это - галка носом вниз, что как бы намекает: большее из чисел пока не определено.

Задача. Сравнить числа:

Следуя определению, вычтем дроби друг из друга:


В каждом сравнении нам потребовалось приводить дроби к общему знаменателю. В частности, используя метод «крест-накрест» и поиск наименьшего общего кратного. Я намеренно не акцентировал внимание на этих моментах, но если что-то непонятно, загляните в урок «Сложение и вычитание дробей » - он совсем легкий.

Сравнение десятичных дробей

В случае с десятичными дробями все намного проще. Здесь не надо ничего вычитать - достаточно просто сравнить разряды. Не лишним будет вспомнить, что такое значащая часть числа. Тем, кто забыл, предлагаю повторить урок «Умножение и деление десятичных дробей » - это также займет буквально пару минут.

Положительная десятичная дробь X больше положительной десятичной дроби Y , если в ней найдется такой десятичный разряд, что:

  1. Цифра, стоящая в этом разряде в дроби X , больше соответствующей цифры в дроби Y ;
  2. Все разряды старше данного у дробей X и Y совпадают.
  1. 12,25 > 12,16. Первые два разряда совпадают (12 = 12), а третий - больше (2 > 1);
  2. 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).

Другими словами, мы последовательно просматриваем десятичные разряды и ищем различие. При этом большей цифре соответствует и большая дробь.

Однако это определение требует пояснения. Например, как записывать и сравнивать разряды до десятичной точки? Вспомните: к любому числу, записанному в десятичной форме, можно приписывать слева любое количество нулей. Вот еще пара примеров:

  1. 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
  2. 2300,5 > 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нуля слева. Теперь видно, что различие начинается в первом же разряде: 2 > 0.

Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.

Задача. Сравните дроби:

  1. 0,029 ∨ 0,007;
  2. 14,045 ∨ 15,5;
  3. 0,00003 ∨ 0,0000099;
  4. 1700,1 ∨ 0,99501.

По определению имеем:

  1. 0,029 > 0,007. Первые два разряда совпадают (00 = 00), дальше начинается различие (2 > 0);
  2. 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
  3. 0,00003 > 0,0000099. Здесь надо внимательно считать нули. Первые 5 разрядов в обеих дробях нулевые, но дальше в первой дроби стоит 3, а во второй - 0. Очевидно, 3 > 0;
  4. 1700,1 > 0,99501. Перепишем вторую дробь в виде 0000,99501, добавив 3 нуля слева. Теперь все очевидно: 1 > 0 - различие обнаружено в первом же разряде.

К сожалению, приведенная схема сравнения десятичных дробей не универсальна. Этим методом можно сравнивать только положительные числа . В общем же случае алгоритм работы следующий:

  1. Положительная дробь всегда больше отрицательной;
  2. Две положительные дроби сравниваются по приведенному выше алгоритму;
  3. Две отрицательные дроби сравниваются так же, но в конце знак неравенства меняется на противоположный.

Ну как, неслабо? Сейчас рассмотрим конкретные примеры - и все станет понятно.

Задача. Сравните дроби:

  1. 0,0027 ∨ 0,0072;
  2. −0,192 ∨ −0,39;
  3. 0,15 ∨ −11,3;
  4. 19,032 ∨ 0,0919295;
  5. −750 ∨ −1,45.
  1. 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
  2. −0,192 > −0,39. Дроби отрицательные, 2 разряд разный. 1 < 3, но в силу отрицательности знак неравенства меняется на противоположный;
  3. 0,15 > −11,3. Положительное число всегда больше отрицательного;
  4. 19,032 > 0,091. Достаточно вторую дробь переписать в виде 00,091, чтобы увидеть, что различие возникает уже в 1 разряде;
  5. −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 > 001,45. Различие - в первом же разряде.

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, и меньше та, у которой числитель меньше . На самом деле, ведь знаменатель показывает, на сколько частей разделили одну целую величину, а числитель показывает, сколько таких частей взяли.

Получается, что делили каждый целый круг на одно и то же число 5 , а брали разное количество частей: больше взяли — большая дробь и получилась.

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, и меньше та, у которой знаменатель больше. Ну и, в самом деле, если мы один круг разделим на 8 частей, а другой на 5 частей и возьмем по одной части от каждого из кругов. Какая часть будет больше?

Конечно, от круга, поделенного на 5 частей! А теперь представьте, что делили не круги, а торты. Вы бы какой кусочек предпочли, точнее, какую долю: пятую или восьмую?

Чтобы сравнить дроби с разными числителями и разными знаменателями, надо привести дроби к наименьшему общему знаменателю, а затем сравнивать дроби с одинаковыми знаменателями.

Примеры. Сравнить обыкновенные дроби:

Приведем эти дроби к наименьшему общему знаменателю. НОЗ(4; 6)=12. Находим дополнительные множители для каждой из дробей. Для 1-й дроби дополнительный множитель 3 (12: 4=3 ). Для 2-й дроби дополнительный множитель 2 (12: 6=2 ). Теперь сравниваем числители двух получившихся дробей с одинаковыми знаменателями. Так как числитель первой дроби меньше числителя второй дроби (9<10) , то и сама первая дробь меньше второй дроби.

Задачи урока:

  1. Обучающие: научить сравнивать обыкновенные дроби различных видов, используя различные приемы;
  2. Развивающие: развитие основных приемов мыслительной деятельности, обобщения сравнения, выделение главного; развитие памяти, речи.
  3. Воспитательные: учиться слушать друг друга, воспитание взаимовыручки, культуры общения и поведения.

Этапы урока:

1. Организационный.

Начнем урок словами французского писателя А.Франса: “Учиться можно весело….Чтобы переварить знания, надо поглощать их с аппетитом”.

Последуем этому совету, постараемся быть внимательными, будем поглощать знания с большим желанием, т.к. они пригодятся нам в дальнейшем.

2. Актуализация знаний учащихся.

1.)Фронтальная устная работа учащихся.

Цель: повторить пройденный материал, требующийся при изучении нового:

А) правильные и неправильные дроби;
Б) приведение дробей к новому знаменателю;
В) нахождение наименьшего общего знаменателя;

(Проводится работа с файлами. Учащиеся имеют их в наличии на каждом уроке. На них пишут ответы фламастером, а за тем ненужная информация стирается.)

Задания для устной работы.

1. Назвать лишнюю дробь среди цепочки:

А) 5/6; 1/3; 7/10; 11/3; 4/7.
Б) 2/6; 6/18; 1/3; 4/5; 4/12.

2. Привести дроби к новому знаменателю 30:

1/2; 2/3; 4/5; 5/6; 1/10.

Найти наименьший общий знаменатель дробей:

1/5 и 2/7; 3/4 и 1/6; 2/9 и 1/2.

2.) Игровая ситуация.

Ребята, наш знакомый клоун (учащиеся познакомились с ним в начале учебного года) попросили меня помочь решить ему задачу. Но я считаю, что вы, ребята, сможете без меня помочь нашему другу. А задача следующая.

“Сравнить дроби:

а) 1/2 и 1/6;
б) 3/5 и 1/3;
в) 5/6 и 1/6;
г) 12/7 и 4/7;
д) 3 1/7 и 3 1/5;
е) 7 5/6 и 3 1/2;
ж) 1/10 и 1;
з) 10/3 и 1;
и) 7/7 и 1.”

Ребята, чтобы помочь клоуну, чему мы должны научиться?

Цель урока, задачи (учащиеся формулируют самостоятельно).

Учитель помогает им, задавая вопросы:

а) а какие из пар дробей мы сможем уже сравнить?

б) какой инструмент для сравнения дробей нам необходим?

3. Ребята в группах (в постоянных разноуровневых).

Каждой группе выдается задание и инструкция к его выполнению.

Первая группа: Сравнить смешанные дроби:

а) 1 1/2 и 2 5/6;
б) 3 1/2 и 3 4/5

и вывести правило равнения смешанных дробей с одинаковыми и с разными целыми частями.

Инструкция: Сравнение смешанных дробей (используется числовой луч)

  1. сравните целые части дробей и сделайте вывод;
  2. сравните дробные части (правило сравнения дробных частей не выводить);
  3. составьте правило – алгоритм:

Вторая группа: Сравнить дроби с разными знаменателями и разными числителями. (использовать числовой луч)

а) 6/7 и 9/14;
б) 5/11 и 1/22

Инструкция

  1. Сравните знаменатели
  2. Подумайте, нельзя ли привести дроби к общему знаменателю
  3. Правило начните со слов: “Чтобы сравнить дроби с разными знаменателями, надо…”

Третья группа: Сравнение дробей с единицей.

а)2/3 и 1;
б) 8/7 и 1;
в)10/10 и 1 и сформулировать правило.

Инструкция

Рассмотрите все случаи: (используйте числовой луч)

а) Если числитель дроби равен знаменателю, ………;
б) Если числитель дроби меньше знаменателя,………;
в) Если числитель дроби больше знаменателя,………. .

Сформулируйте правило.

Четвертая группа: Сравните дроби:

а) 5/8 и 3/8;
б) 1/7 и 4/7 и сформулируйте правило сравнения дробей с одинаковым знаменателем.

Инструкция

Используйте числовой луч.

Сравните числители и сделайте вывод, начиная словами: “Из двух дробей с одинаковыми знаменателями……”.

Пятая группа: Сравните дроби:

а) 1/6 и 1/3;
б) 4/9 и 4/3, используя числовой луч:

0__.__.__1/6__.__.__1/3__.__.4/9__.__.__.__.__.__.__.__.__.__1__.__.__.__.__.__4/3__.__

Сформулируйте правило сравнения дробей с одинаковыми числителями.

Инструкция

Сравните знаменатели и сделайте вывод, начиная со слов:

“Из двух дробей с одинаковыми числителями………..”.

Шестая группа: Сравните дроби:

а) 4/3 и 5/6; б) 7/2 и 1/2, используя числовой луч

0__.__.__1/2__.__5/6__1__.__4/3__.__.__.__.__.__.__.__.__.__.__.__.__7/2__.__

Сформулируйте правило сравнения правильных и неправильных дробей.

Инструкция.

Подумайте, какая дробь всегда больше, правильная или неправильная.

4. Обсуждение выводов, сделанных в группах.

Слово каждой группе. Формулировка правил учащихся и сравнение их с эталонами соответствующих правил. Далее выдаются распечатки правила сравнения различных видов обыкновенных дробей каждому учащемуся.

5. Возвращаемся к задаче, поставленной в начале урока. (Решаем задачу клоуна вместе).

6. Работа в тетрадях. Используя правила сравнения дробей, учащиеся под руководством учителя сравнивают дроби:

а) 8/13 и 8/25;
б)11/42 и 3/42;
в)7/5 и 1/5;
г) 18/21и 7/3;
д) 2 1/2 и 3 1/5 ;
е) 5 1/2 и 5 4/3;

(возможно приглашение ученика к доске).

7. Учащимся предлагается выполнить тест по сравнению дробей на два варианта.

1 вариант.

1) сравнить дроби: 1/8 и 1/12

а) 1/8 > 1/12;
б) 1/8 <1/12;
в) 1/8=1/12

2) Что больше: 5/13 или 7/13?

а) 5/13;
б) 7/13;
в) равны

3) Что меньше: 2\3 или 4/6?

а) 2/3;
б) 4/6;
в) равны

4) Какая из дробей меньше 1: 3/5; 17/9; 7/7?

а) 3/5;
б) 17/9;
в) 7/7

5) Какая из дробей больше 1: ?; 7/8; 4/3?

а) 1/2;
б) 7/8;
в) 4/3

6) Сравнить дроби: 2 1/5 и 1 7/9

а) 2 1/5<1 7/9;
б) 2 1/5 = 1 7/9;
в) 2 1/5 >1 7/9

2 вариант.

1) сравнить дроби: 3/5 и 3/10

а) 3/5 > 3/10;
б) 3/5<3/10;
в) 3/5=3/10

2) Что больше: 10/12или1/12?

а) равны;
б) 10/12;
в) 1/12

3) Что меньше: 3/5 или 1/10?

а) 3/5;
б) 1/10;
в) равны

4) Какая из дробей меньше 1: 4/3;1/15;16/16?

а) 4/3;
б) 1/15;
в) 16/16

5) Какая из дробей больше 1: 2/5;9/8 ;11/12 ?

а) 2/5;
б) 9/8;
в) 11/12

6) Сравнить дроби: 3 1/4 и 3 2/3

а) 3 1/4=3 2/3;
б) 3 1/4 > 3 2/3;
в) 3 1/4 < 3 2/3

Ответы к тесту:

1 вариант: 1а, 2б, 3в, 4а, 5б, 6а

2 вариант: 2а, 2б, 3б, 4б, 5б, 6в

8. Еще раз возвращаемся к цели урока.

Проверяем правила сравнения и даем дифференцированное домашнее задание:

1,2,3 группы – придумать на каждое правило сравнение по два примера и решить их.

4,5,6 группы - №83 а,б,в, №84 а,б,в (из учебника).

Сравнение дробей. В этой статье разберём различные способы используя которые можно сравнить две дроби. Рекомендую посмотреть весь по дробям и изучать последовательно.

Прежде чем показать стандартный алгоритм сравнения дробей давайте разберём некоторые случаи, в которых сразу глядя на пример можно сказать которая из дробей будет больше. Здесь нет особой сложности, немного аналитики и всё готово. Посмотрите на следующие дроби:


В строке (1) сразу можно определить какая дробь больше, в строке (2) это сделать затруднительно и тут применим «стандартный» (или его можно назвать наиболее часто применяемым) подход для сравнения.

Способ первый – аналитический.

1. Перед нами две дроби:

Числители равны, знаменатели неравны. Какая из них больше? Ответ очевиден! Больше та, у которой меньше знаменатель, то есть три семнадцатых. Почему? Простой вопрос: Что больше – одна десятая часть от чего либо или одна тысячная? Конечно же, одна десятая.

Получается, что при равных числителях больше та дробь, у которой меньше знаменатель. Не имеет значения стоят ли в числителях единицы или другие равные числа, суть не меняется.

Дополнительно к этому можно добавить следующий пример:

Какая из данных дробей больше (х положительное число)?

На основании уже представленной информации не трудно сделать вывод.

*Знаменатель первой дроби меньше, значит она больше.

2. Теперь рассмотрим вариант когда в одной из дробей числитель больше знаменателя. Пример:

Понятно, что первая дробь больше единицы, так как числитель больше знаменателя. А вторая дробь меньше единицы, поэтому без вычислений и преобразований можем записать:

3. При сравнении некоторых обыкновенных неправильных дробей явно видно, что у одной из них целая часть больше. Например:

В первой дроби целая часть равна трём, а во второй единице, поэтому:

4. В некоторых примерах также явно видно какая дробь больше, например:

Видно, что первая дробь меньше 0,5. Почему? Если выразить подробно, то:

а вторая больше 0,5:

Поэтому можно ставить знак сравнения:

Способ второй. «Стандартный» алгоритм сравнения.

Правило! Чтобы сравнить две дроби, необходимо чтобы знаменатели были равны. Тогда сравнение осуществляется по числителям. Больше будет та дробь, у которой больше числитель.

*Это и есть основное ВАЖНОЕ ПРАВИЛО, которым пользуются для сравнения дробей.

Если даны две дроби с неравными знаменателями, то необходимо их привести к такому виду, чтобы они были равны. Для этого используется дроби.

Сравним следующие дроби (знаменатели неравны):

Приведём их:

Как привести дроби к равным знаменателям? Очень просто! Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой.

Ещё примеры:


Обратите внимание, что знаменатель вычислять не обязательно (видно что они равны), для сравнения достаточно вычислить только числители.

*Все дроби, которые мы рассмотрели выше (первый способ) можно сравнить также используя этот подход.

На этом можно было бы закончить … Но есть ещё один «беспроигрышный» способ сравнения.

Способ третий. Деление столбиком.

Посмотрите пример:

Согласитесь, что для того чтобы привести к общему знаменателю и затем сравнить числители необходимо выполнить относительно объёмные вычисления. Используем следующий подход — выполним деление столбиком:


Как только мы обнаруживаем разницу в результате, то процесс деления можно остановить.

Вывод: так как 0,12 больше чем 0,11, то вторая дробь будет больше. Таким образом, можно поступать со всеми дробями.

На этом всё.

С уважением, Александр.

В повседневной жизни нам часто приходится сравнивать дробные величины. Чаще всего это не вызывает каких-либо трудностей. Действительно, всем понятно, что половина яблока больше, чем четверть. Но когда необходимо записать это в виде математического выражения, это может вызвать затруднения. Применяя следующие математические правила, вы легко можете справиться с этой задачей.

Как сравнивать дроби с одинаковыми знаменателями

Такие дроби сравнивать удобнее всего. В этом случае используйте правило:

Из двух дробей с одинаковыми знаменателями, но разными числителя, большей будет та, числитель которой больше, а меньшей – та, числитель которой меньше.

Например, сравнить дроби 3/8 и 5/8. Знаменатели в этом примере равны, следовательно, применяем это правило. 3<5 и 3/8 меньше, чем 5/8.

И действительно, если разрезать две пиццы на 8 долей, то 3/8 доли всегда меньше, чем 5/8.

Сравнение дробей с одинаковыми числителями и разными знаменателями

В этом случае сравнивают размеры долей-знаменателей. Следует применять правило:

Если у двух дробей числители равны, то больше та дробь, знаменатель которой меньше.

Например, сравнить дроби 3/4 и 3/8. В этом примере числители равны, значит, используем второе правило. У дроби 3/4 знаменатель меньше, чем у дроби 3/8. Следовательно 3/4>3/8

И действительно, если вы съедите 3 куска пиццы, разделенной на 4 части, то будете более сыты, чем если бы съели 3 куска пиццы, разделенной на 8 частей.


Сравнение дробей с разными числителями и знаменателями

Применяем третье правило:

Сравнение дробей с разными знаменателями нужно привести к сравнению дробей с одинаковыми знаменателями. Для этого необходимо привести дроби к общему знаменателю и использовать первое правило.

Например, необходимо сравнить дроби и . Для определения большей дроби приведем эти две дроби к общему знаменателю:

  • Теперь найдём второй дополнительный множитель: 6:3=2. Записываем его над второй дробью: