Клиническое значение исследования вариабельности сердечного ритма. Норма и снижение вариабельности сердечного ритма О чем говорит значительное снижение врс




Заболевания сердца в последние десятилетия вышли на первый план. Наука не стоит на месте, с каждым годом появляются новые методы диагностики и лечения, которые помогают бороться с заболеваниями различной этиологии. Кардиология всегда считалась одной из самых важных медицинских наук. Идет постоянная «борьба» с заболеваниями сердечно-сосудистой системы. На смену давно известных методов диагностики и лечения приходят новые. Успешным примером, может служить анализ микроальтернаций ЭКГ, который позволяет предугадать начало сердечно-сосудистой патологии. Известно, что сердце является своеобразной автономной системой, у которой есть собственная «электростанция» - узлы, в которых образуются нервные импульсы, заставляющие сердечные стенки сокращаться. Однако каким бы самостоятельным не было сердце, на него оказывает влияние и нервная система, как симпатическая, так и парасимпатическая, которая может привести к сбоям в работе сердца. Одним из современных методов оценки взаимосвязи сердца и нервной системы является оценка вариабельности сердечного ритма (ВСР) .

Что такое "Вариабельность сердечного ритма"

Во-первых, необходимо разобраться с термином «вариабельность» — это такое свойство биологических процессов, которое связано с необходимостью приспособления организма к изменяющимся условиям окружающей среды. Другими словами вариабельность - это изменчивость различных параметров, в том числе и ритма сердца, в ответ на воздействие каких-либо факторов. Следовательно, вариабельность сердечного ритма (ВСР) отражает работу сердечно-сосудистой системы и работу механизмов регуляции целостного организма. Учеными была обнаружена взаимосвязь между вегетативной нервной системой и смертностью от сердечно-сосудистых заболеваний, включая внезапную смерть.

К списку публикаций

Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

Что такое ВСР?

Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

Методы определения

Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

Анализ проводится на изучении последовательности интервалов:

  • R-R (электрокардиограмма сокращений);
  • N-N (промежутки между нормальными сокращениями).

Статистические методы. Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

Показатели данных промежутков включают:

  • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
  • RMSSD сравнение последовательности N-N интервалов;
  • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
  • CV оценка показателей величинной вариабельности.

Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

  • Mo (Мода) обозначает кардиоинтервалы;
  • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
  • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

Способы исследования ВСР

Международными медицинскими стандартами определено два способа исследования сердечного ритма:

  1. Регистрационная запись «RR» интервалов - на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
  2. Суточная запись «RR» промежутков - точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

ВСР здорового организма

Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

Если ВСР снижен

Резкое снижение вариации сердечного ритма указывает на определенные заболевания:

· Ишемическая и гипертоническая болезни;

· Прием некоторых препаратов;

Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

В лечебной практике анализ позволяет:

· Провести оценку висцеральной регуляции сердца;

· Определить общую работу организма;

· Оценить уровень стрессовой ситуации и физической активности;

· Контролировать эффективность проведения лекарственной терапии;

· Диагностировать заболевание на начальной стадии;

· Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

Related Posts:

Leave a Reply

Существует ли риск инсульта?

1. Повышенное(более 140) артериальное давление:

  • часто
  • иногда
  • редко

2. Атеросклероз сосудов

3. Курение и алкоголь:

  • часто
  • иногда
  • редко

4. Болезни сердца:

  • врожденный порок
  • клапанные нарушения
  • инфаркт

5. Прохождение диспансеризации и диангостики МРТ:

  • каждый год
  • раз в жизни
  • никогда

Итого: 0 %

Инсульт достаточно опасное заболевание, которому подвержены люди далеко не только старческого возраста, но и среднего и даже совсем молодого.

Инсульт – чрезвычайная опасная ситуация, когда требуется немедленная помощь. Зачастую он заканчивается инвалидностью, во многих случаях даже смертельным исходом. Помимо закупорки кровеносного сосуда при ишемическом типе, причиной приступа может стать и кровоизлияние в мозг на фоне повышенного давления, иначе говоря геморрагический инсульт.

Ряд факторов увеличивает вероятность наступления инсульта. Не всегда виновны, например, гены или возраст, хотя после 60 лет угроза значительно возрастает. Тем не менее, каждый может что-то предпринять для его предотвращения.

Повышенное артериальное давление является основным фактором угрозы развития инсульта. Коварная гипертония не проявляется симптомами на начальном этапе. Поэтому больные замечают ее поздно. Важно регулярно измерять кровяное давление и принимать лекарства при повышенных уровнях.

Никотин сужает кровеносные сосуды и повышает артериальное давление. Опасность инсульта у курильщика вдвое выше, чем у некурящего. Тем не менее, есть и хорошие новости: те, кто бросают курить, заметно снижают эту опасность.

3. При избыточной массе тела: худейте

Ожирение - важный фактор развития инфаркта мозга. Тучные люди должны задуматься о программе похудения: есть меньше и качественнее, добавить физической активности. Пожилым людям стоит обсудить с врачом, в какой степени им полезно снижение веса.

4. Держите уровни холестерина в норме

Повышенный уровень «плохого» холестерина ЛНП ведет к отложениям в сосудах бляшек и эмбол. Какими должны быть значения? Каждый должен выяснить в индивидуальном порядке с врачом. Поскольку пределы зависят, например, от наличия сопутствующих заболеваний. Кроме того, высокие значения «хорошего» холестерина ЛВП считаются положительными. Здоровый образ жизни, особенно сбалансированное питание и много физических упражнений, может положительно повлиять на уровень холестерина.

Полезной для сосудов является диета, которая обычно известна как «средиземноморская». То есть: много фруктов и овощей, орехи, оливковое масло вместо масла для жарки, меньше колбасы и мяса и много рыбы. Хорошие новости для гурманов: можно позволить себе один день отступить от правил. Важно в общем правильно питаться.

6. Умеренное потребление алкоголя

Чрезмерное употребление алкоголя увеличивает гибель пострадавших от инсульта клеток мозга, что не допустимо. Полностью воздерживаться необязательно. Стакан красного вина в день даже полезен.

Движение иногда лучшее, что можно сделать для своего здоровья, чтобы сбросить килограммы, нормализовать артериальное давление и поддержать эластичность сосудов. Идеальны для этого упражнения на выносливость, такие как плавание или быстрая ходьба. Продолжительность и интенсивность зависят от личной физической подготовки. Важное замечание: нетренированные старше 35 лет должны быть первоначально осмотрены врачом, прежде чем начать заниматься спортом.

8. Прислушивайтесь к ритму сердца

Ряд заболеваний сердца способствует вероятности инсульта. К ним относятся фибрилляция предсердий, врожденные пороки и другие нарушения ритма. Возможные ранние признаки проблем с сердцем нельзя игнорировать ни при каких обстоятельствах.

9. Контролируйте сахар в крови

Люди с диабетом в два раза чаще переносят инфаркт мозга, чем остальная часть населения. Причина заключается в том, что повышенные уровни глюкозы могут привести к повреждению кровеносных сосудов и способствуют отложению бляшек. Кроме того, у больных сахарным диабетом часто присутствуют другие факторы риска инсульта, такие как гипертония или слишком высокое наличие липидов в крови. Поэтому больные диабетом должны позаботиться о регулировании уровня сахара.

Иногда стресс не имеет ничего плохого, может даже мотивировать. Однако, продолжительный стресс может повысить кровяное давление и восприимчивость к болезням. Он косвенно может стать причиной развития инсульта. Панацеи от хронического стресса не существует. Подумайте, что лучше для вашей психики: спорт, интересное хобби или, возможно, упражнения на расслабление.

Анализ вариабельности ритма сердца

Индивидуализированный подбор антиаритмической терапии при мерцательной аритмии (МА) до сих пор представляет собой сложную проблему. В связи с этим продолжается разработка новых неинвазивных методик, повышающих точность клинической диагностики и эффективность подбора лечебных схем. В качестве такой методики может использоваться анализ вариабельности ритма сердца (ВРС).

В основе метода вариабельности ритма сердца лежит количественный анализ RR интервалов, измеряемых по ЭКГ за определенный промежуток времени. При этом можно нормировать либо число кардиоциклов, либо продолжительность записи. Рабочая комиссия European Society of Cardiology и North American Society of Pacing and Electrophysiology предложила стандартизировать время регистрации ЭКГ, необходимое для адекватной оценки параметров вариабельности ритма сердца. Для изучения временных характеристик принято использовать короткую (5 мин) и длинную (24 ч) запись ЭКГ.

Вариабельность ЧСС может быть определена различными способами. Наибольшее распространение при анализе вариабельности ритма сердца получили методы оценки во временном и частотном диапазоне.

В первом случае вычисляют показатели на основе записи интервалов NN в течение длительного времени. Предложен ряд параметров количественной характеристики вариабельности ритма сердца во временном диапазоне: NN, SDNN, SDANN, SDNNi, RMSSD, NN > 50, pNN 50.

NN - общее количество RR интервалов синусового происхождения.

SDNN - стандартное отклонение NN интервалов. Используется для оценки общей вариабельности ритма сердца. Математически эквивалентно общей мощности в спектральном анализе и отражает все циклические компоненты, формирующие вариабельность ритма.

SDANN - стандартное отклонение средних значений NN интервалов, вычисленных по 5-минутным промежуткам в течение всей записи. Отражает колебания с интервалом более 5 мин. Используется для анализа низкочастотных компонентов вариабельности.

SDNNi - среднее значение стандартных отклонений NN интервалов, вычисленных по 5-минутным промежуткам в течение всей записи. Отражает вариабельность с цикличностью менее 5 мин.

RMSSD - квадратный корень из средней суммы квадратов разностей между соседними NN интервалами. Используется для оценки высокочастотных компонентов вариабельности.

NN 50 - количество пар соседних NN интервалов, различающихся более чем на 50 м/с в течение всей записи.

pNN 50 - значение NN 50, деленное на общее число NN интервалов.

Исследование вариабельности ритма сердца в частотном диапазоне позволяет анализировать выраженность колебаний различной частоты в общем спектре. Другими словами, данный метод определяет мощность различных гармонических составляющих, которые совместно формируют вариабельность. Возможный диапазон интервалов RR можно интерпретировать как ширину полосы частот пропускания канала регуляции сердечного ритма. По отношению мощностей различных спектральных компонент можно судить о доминировании того или иного физиологического механизма регуляции сердечного ритма. Спектр строится методом быстрого преобразования Фурье. Реже используется параметрический анализ, основанный на ауторегрессионных моделях. В спектре выделяют четыре информативных частотных диапазона:

HF - высокочастотный (0,15-0,4 Гц). HF-компонента признана как маркер активности парасимпатической системы.

LF - низкочастотный (0,04-0,15 Гц). Интерпретация LF-компоненты является более противоречивой. Одними исследователями она трактуется как маркер симпатической модуляции, другими - как параметр, включающий симпатическое и вагусное влияние.

VLF - очень низкочастотный (0,003-0,04 Гц). Происхождение VLF и ULF-компонент нуждается в дальнейшем изучении. По предварительным данным, VLF отражает активность симпатического подкоркового центра регуляции.

ULF - ультранизкочастотный (< 0,003 Гц). Для 5-минутной записи ЭКГ-оценка и интерпретация ULF-компоненты некорректна из-за нарушения требуемого соотношения между длителностью регистрации и нижней частотой спектра. Поэтому использование данной компоненты оправдано лишь при 24-часовом исследовании ЭКГ.

Спектр ритмограммы сосредоточен в узкой инфранизкочастотной области от 0 до 0,4 Гц, что соответствует колебаниям от 2,5 с до бесконечности. Практически же максимальный период ограничивается промежутком, равным 1/3 времени регистрации интервалограммы. При спектральном анализе 5-минутной записи ЭКГ можно обнаружить волновые колебания с периодами до 99 с, а при холтер-мониторировании - и циркадные с промежутками до 8 ч. Единственное ограничение состоит в требовании стационарности, т. е. независимости статистических характеристик от времени.

Основная размерность спектральных компонент выражается в мс 2 /Гц. Иногда они измеряются в относительных единицах как отношение мощности отдельной спектральной компоненты к общей мощности спектра за вычетом ультранизкочастотной составляющей.

Совместный временной и спектральный анализ значительно увеличивает объем информации об изучаемых процессах и явлениях различной природы, так как временные и частотные свойства взаимосвязаны. Однако одни характеристики ярко отражаются во временной плоскости, другие же проявляют себя при частотном анализе.

Выделяют две основные функции вариабельности ритма сердца: разброса и концентрации. Первую тестируют показатели SDNN, SDNNi, SDANN. 8 коротких выборках синусового ритма в условиях стационарности процесса функция разброса отражает парасимпатический отдел регуляции. Показатель RMSSD в физиологической интерпретации можно рассматривать как оценку способности синусового узла к концентрации ритма сердца, регулируемой переходом функции основного водителя ритма к различным отделам синоатриального узла, имеющим неодинаковый уровень синхронизации возбудимости и автоматизма. При увеличении ЧССнафоне активации симпатического влияния отмечается уменьшение RMSSD, т.е. усиление концентрации, и наоборот, при нарастании брадикардии на фоне повышения тонуса вагуса концентрация ритма снижается. У больных с основным несинусовым ритмом данный показатель не отражает вегетативного влияния, но указывает на уровень функциональных резервов ритма сердца в плане поддержания адекватной гемодинамики. Резкое ослабление функции концентрации при увеличении RMSSD более 350 мс у больных с гетеротропной брадиаритмией тесно ассоциировано с внезапной смертью.

Наиболее часто вариабельность ритма сердца используется для стратификации риска сердечной и аритмической летальности после инфаркта миокарда. Доказано, что снижение показателей (в частности SDNN < 100) коррелируете высокой вероятностью развития угрожающих жизни аритмий и внезапной смерти после инфаркта миокарда.

Имеются данные о том, что низкая вариабельность является предиктором патологии сердечно-сосудистой системы у практически здоровых лиц. Таким образом, уже доказана прогностическая значимость этих параметров. Однако в настоящее время ряд ограничений снижает диагностическую ценность методики. Одним из главных препятствий к широкому клиническому использованию показателей вариабельности ритма сердца является большой размах индивидуальных колебаний при одном и том же заболевании, что делает границы нормы очень расплывчатыми.

В табл. представлены нормальные параметры вариабельности ритма сердца.

Нормальные значения вариабельности ритма сердца

Что называют вариабельностью сердечного ритма, алгоритм проведения анализа

«Сердце работает как часы» - эту фразу часто применяют к людям, обладающим крепким, здоровым сердцем. Подразумевается, что у такого человека четкий и ровный ритм сердцебиения. На самом деле – суждение в корне неверно. Стивен Гейлс – английский ученый, производивший исследования в области химии и физиологии, в 1733 году сделал открытие, что ритм сердца изменчив.

Что такое вариабельность сердечного ритма?

Цикл сокращения сердечной мышцы изменчив. Даже у совершенно здоровых людей, находящихся в состоянии покоя, он разный. Например: если у человека пульс составляет 60 ударов в минуту, это не значит, что промежуток времени между ударами сердца составляет 1 секунду. Паузы могут быть меньше или дольше на доли секунд, а в сумме составить 60 ударов. Такое явление называют вариабельность сердечного ритма. В медицинских кругах - в виде аббревиатуры ВСР.

Так как от состояния организма зависит и разница интервалов между циклами сердечных сокращений, проводить анализ ВСР нужно в стационарном положении. Изменения частоты сердечных сокращений (ЧСС) происходят из-за различных функций организма, постоянно меняясь под новые уровни.

Результаты спектрального анализа ВСР указывают на физиологические процессы, происходящие в системах организма. Такой метод изучения вариабельности дает возможность произвести оценку функциональных особенностей организма, проверить работу сердца, выявить: насколько резко снижена ЧСС, нередко приводящая к внезапному летальному исходу.

Связь нервной вегетативной системы и работы сердца

Вегетативная нервная система (ВНС) отвечает за регулировку работы внутренних органов, включая сердце и кровеносные сосуды. Ее можно сравнить с автономным бортовым компьютером, который отслеживает активность и регулирует деятельность систем в организме. Человек не задумывается, как он дышит, или как внутри происходит пищеварительный процесс, сужаются и расширяются кровеносные сосуды. Вся эта деятельность протекает в автоматическом режиме.

ВНС делится на два вида:

Каждая из систем влияет на функционирование организма, на работу сердечной мышцы.

Симпатическая – отвечает за обеспечение функциями, которые требуются для выживания организма в стрессовых ситуациях. Активирует силы, подает большой приток крови к мышечным тканям, заставляет учащенно биться сердце. При стрессовом состоянии вы снижаете вариабельность сердечного ритма: промежутки между ударами становятся меньше, а скорость пульса увеличивается.

Парасимпатическая – отвечает за отдых и аккумуляцию организма. Поэтому влияет на снижение ритма сердца и на вариабельность. При глубоких вдохах человек успокаивается, а организм начинает восстанавливать функции.

Именно благодаря способностям ВНС подстраиваться к внешним и внутренним изменениям, правильной балансировке в разных ситуациях обеспечивается выживание человека. Нарушения в работе нервной вегетативной системы нередко становятся причинами расстройств, развития заболеваний и даже смертельных исходов.

История появления метода

Использовать анализ вариабельности сердечного ритма стали не так давно. Метод оценивания ВСР привлек внимание ученых лишь вгоды XX века. В этот период зарубежные светила науки занимались разработкой анализа и его клинического применения. В Советском Союзе приняли рискованное решение использовать метод на практике.

При подготовке космонавта Гагарина Ю.А. к первому полету советские ученые столкнулись со сложной задачей. Требовалось изучить вопросы влияния космического полета на организм человека и снабдить космический объект минимальным количеством приборов и датчиков.

Ученый совет принял решение использовать спектральный анализ ВСР для изучения состояния космонавта. Метод разработан доктором Баевским Р.М. и назван кардиоинтервалографией. В этот же период доктор приступил к созданию первого датчика, который использовали в качестве измерительного прибора для проверки ВСР. Он представлял переносную электровычислительную машину с аппаратом для снятия показаний сердечного ритма. Размеры датчика сравнительно небольшие, поэтому аппарат можно переносить и использовать для обследования в любых местах.

Баевский Р.М. открыл совершенно новый подход к проверке человеческого здоровья, который называется донозологическая диагностика. Метод позволяет оценить состояние человека и определить, что послужило развитию болезни и многое другое.

Ученые, проводившие исследования в конце 80-х годов, установили, что спектральный анализ ВСР дает точный прогноз по поводу летального исхода у лиц, которые перенесли инфаркт миокарда.

В 90-е годы кардиологи пришли к единым стандартам клинического использования и проведения спектрального анализа ВСР.

Где еще используют метод ВСР?

На сегодняшний день кардиоинтервалография применяется не только в области медицины. Одна из популярных сфер использования – спорт.

Ученые из Китая установили, что анализ ВСР позволяет оценить вариационный размах сердечного ритма и определить степень стрессового состояния организма при физических нагрузках. С помощью метода можно для каждого спортсмена разработать персональную программу тренировок.

Финские ученые при разработке системы Firstbeat взяли за основу анализ ВСР. Программу рекомендуется использовать спортсменам, чтобы измерить уровень стресса, проанализировать эффективность проводимых тренировок и оценить длительность восстановления организма после физических нагрузок.

Анализ ВСР

Вариабельность сердечного ритма изучают при помощи анализа. Этот метод основывается на определении последовательности R-R интервалов ЭКГ. Также существуют интервалы NN, но в этом случае учитывают лишь расстояния между нормальными сердечными сокращениями.

Полученные данные дают возможность определить физическое состояние пациента, проследить за динамикой и выявить отклонения в работе человеческого организма.

Изучив адаптационные резервы человека, можно предсказать возможные сбои в работе сердца и кровеносных сосудов. Если параметры снижены – это говорит о том, что взаимосвязь ВСН и сердечно-сосудистой системы нарушилась, что влечет за собой развитие патологий в работе сердечной мышцы.

Спортсмены и крепкие, здоровые парни имеют высокие данные ВСР, так как повышенный парасимпатический тонус – характерное для них состояние. Высокий симпатический тонус возникает из-за различного рода болезней сердца, что и приводит к пониженному показателю ВСР. А вот при остром, резком снижении вариабельности возникает серьезный риск смертельного исхода.

Спектральный анализ – особенности метода

При использовании спектрального анализа можно произвести оценку влияния систем регулирования организма на сердечные функции.

Медики выделили основные компоненты спектра, соответствующие ритмическим колебаниям сердечной мышцы и отличающиеся различной периодичностью:

  • HF – высокочастотный;
  • LF – низкочастотный;
  • VLF – очень низкочастотный.

Все эти компоненты применяют в процессе кратковременной записи электрокардиограммы. Для проведения длительной записи применяют ультранизкочастотный компонент ULF.

Каждый компонент имеет свои функции:

  • LF – определяет, как симпатическая и парасимпатическая нервная система влияет на ритм сердцебиения.
  • HF – имеет связь с движениями дыхательной системы и показывает, как блуждающий нерв оказывает влияние на работу сердечной мышцы.
  • ULF, VLF указывают на различные факторы: тонус сосудов, процессы терморегуляции и прочие.

Важным показателем является TP, который дает значение общей мощности спектра. Дает возможность суммировать активность воздействий ВНС на работу сердца.

Не менее важными параметрами спектрального анализа являются индекс централизации, который вычисляют, используя формулу: (HF+LF)/VLF.

При проведении спектрального анализа берут во внимание индекс вагосимпатического взаимодействия компонентов LF и HF.

Соотношение LF/HF указывают на то, как симпатический и парасимпатический отдел ВНС влияет на сердечную деятельность.

Рассмотрим нормы некоторых показателей спектрального анализа ВСР:

  • LF. Определяет влияние адреналовой системы симпатического отдела ВНС на работу сердечной мышцы. Нормальные значения показателя в пределахмс 2 .
  • HF. Определяет активность парасимпатической нервной системы и ее влияние на деятельность сердечно-сосудистой системы. Норма показателя:мс 2 .
  • LF/HF. Указывает на баланс СНС и ПСНС и на рост напряжения. Нормой считается 1,5-2,0.
  • VLF. Определяет гормональную поддержку, терморегуляторные функции, тонус сосудов и многое другое. Норма составляет не больше 30%.

ВСР здорового человека

Показания спектрального анализа ВСР у каждого человека индивидуальны. При помощи вариабельности ритма сердца можно легко оценить, насколько высока физическая выносливость относительно возрастных показателей, пола и времени суток.

Например: у женского населения ЧСС более высокая. Наивысшие показатели ВСР наблюдаются у детей и подростков. LF и HF компоненты с возрастом становятся ниже.

Доказано, что масса тела человека влияет на показания ВСР. При низком весе мощность спектра увеличивается, а вот у лиц, страдающих ожирением, показатель снижен.

Занятия спортом и умеренные физические нагрузки благотворно влияют на вариабельность. При таких занятиях ЧСС уменьшается, а мощность спектра усиливается. Силовые нагрузки учащают сердцебиение и понижают вариабельность сердечного ритма. Нередки случаи, когда спортсмен внезапно умирал после интенсивной тренировки.

Что означает сниженный ВСР?

Если произошло резкое снижение вариабельности сердечного ритма, это может свидетельствовать о развитии серьезных заболеваний, среди которых чаще всего встречаются:

  • Гипертония.
  • Ишемическая болезнь сердца.
  • Синдром Паркинсона.
  • Сахарный диабет I и II типа.
  • Рассеянный склероз.

Нарушения ВСР нередко вызваны приемами некоторых препаратов. Сниженные вариации могут свидетельствовать о патологиях неврологического характера.

Анализ ВСР – несложный, доступный способ оценить регуляторные функции вегетативной системы при различных заболеваниях.

С помощью такого исследования можно:

  • дать объективную оценку работе всех систем организма;
  • определить, насколько высок уровень стресса при физических нагрузках;
  • производить контроль эффективности проводимого лечения;
  • оценить висцелярную регуляцию сердечной мышцы;
  • выявить патологии на ранних стадиях заболевания;
  • подобрать подходящую терапию при болезнях сердечно-сосудистой системы.

Исследование ЧСС позволяет установить степень тяжести патологии и выбрать эффективное лечение, поэтому не нужно пренебрежительно относиться к этому виду обследования.

Вариабельность сердечного ритма

В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными.

Наше сердце - это не просто насос. Это очень сложный, центр обработки информации, который общается с головным мозгом с помощью нервной и гормональной системы, а также другими путям. В статьях доступно обширное описание и схемы взаимодействия сердца с головным мозгом.

И мы так же не управляем нашим сердцем, его автономность обусловлена работой синусового узла - который запускает сокращение сердечной мышцы. Он обладает автоматизмом, то есть самопроизвольно возбуждается и запускает распространение потенциала действия по миокарду, что вызывает сокращение сердца.

Работу всех регуляторных систем нашего организма можно представить в виде двухконтурной модели, предложенной Баевским Р.М. . Он предложил разделить все регуляторные системы (контуры управления) организма на два типа: высший - центральный контур и низший - автономный контур регуляции (рис. 3).

Автономный контур регуляции состоит из синусового узла, который непосредственно связан с сердечно-сосудистой системой (ССС) и через нее с системой дыхания (С.д.) и нервными центрами, обеспечивающими рефлекторную регуляцию дыхания и кровообращения. Непосредственное воздействие на клетки синусового узла оказывают блуждающие нервы (V).

Центральный контур регуляции воздействует на синусовый узел через симпатические нервы (S) и гуморальный канал регуляции (г.к.), либо изменяет центральный тонус ядер блуждающих нервов имеет более сложную структуру, он состоит из 3 уровней, в зависимости от выполняемых функций.

Уровень В: центральный контур управления сердечным ритмом, обеспечивает “внутрисистемный” гомеостаз через симпатическую систему.

Уровень Б: обеспечивает межсистемный гомеостаз, между различными системами организма с помощью нервных клеток и гуморально (с помощью гормонов).

Уровень А: обеспечивает адаптацию с внешней средой с помощью центральной нервной системы.

Эффективная адаптация происходит с минимальным участием высших уровней управления, то есть за счет автономного контура. Чем больше вклад центральных контуров тем сложней и “дороже” организму адаптироваться.

На записи ЭКГ это выглядит примерно так:

Так как нам интересна работа всех регуляторных систем организма, а она отображается на работе синусового узла, крайне важно исключить из рассмотрения результаты действия других центров возбуждения, действие которых для наших целей будет являться помехой.

Поэтому крайне важно чтобы сокращение сердца запускал именно синусовый узел. На ЭКГ это будет проявляться в виде зубца P (отмечен красным цветом) (см. рисунок 6)

Возможны различные дефекты записи из-за:

Стараемся исключить все отвлекающие факторы, наша задача в идеале делать все замеры в одно и тоже время и в одном и том же комфортном для нас месте. Также рекомендую встать с кровати, сделать необходимые (утренние) процедуры и вернуться назад - это уменьшить шанс уснуть во время записи, что периодически случается. Полежать еще пару минут и включить запись. Чем продолжительней запись тем более она информативна. Для коротких записей обычно достаточно 5 минут. Есть еще варианты записи 256 RR интервалов . Хотя можно встретить и попытки оценить ваше состояние и по более коротким записям. Мы используем 10 минутную запись, хотя хотелось бы и побольше…Более длинная запись будет содержать больше информации о состоянии организма.

И так, мы получили массив RR интервалов, который выглядит примерно так: рисунок 7:

Перед началом анализа нужно исключить из исходных данных артефакты и шумы (экстрасистолы, аритмии, дефекты записи и т.д.). Если это нельзя сделать, то такие данные не годятся, вероятней всего показатели будут либо завышены, либо занижены.

Вариабельность сердечного ритма может быть оценена различными способами. Один из самых простых способов - это оценить статистическую изменчивость последовательности RR интервалов, для этого используют статистический метод. Это позволяет количественно оценить вариабельность в определенном промежутке времени.

SDNN - стандартное отклонение всех нормальных (синусовых, NN) интервалов от среднего значения. Отражает общую вариабельность всего спектра, коррелирует с общей мощностью (TP), в большей степени зависит от низкочастотной составляющей. Также любое ваше движение во времени записи обязательно отразится на этом показателе. Один из основных показателей, оценивающий механизмы регуляции.

В статье пытаются найти корреляцию этого показателя с VO2Max.

NN50 - количество пар последовательных интервалов, которые отличаются друг от друга более чем на 50 мс.

pNN50 - % NN50 интервалов от общего количества всех NN интервалов. Говорит о активности парасимпатической системы.

RMSSD - так же как и pNN50 свидетельствует в основном о активности парасимпатической системы . Измеряется как квадратный корень из средних квадратов разностей смежных NN интервалов.

А работе оценивают динамику подготовки триатлетов на основе RMSSD и ln RMSSD за 32 недели.

Также этот показатель коррелирует с состоянием иммунной системы .

CV(SDNN/R-Rср) - коэффициент вариации, позволяет оценивать влияния ЧСС на вариабельность.

Для наглядности прикрепил файл с динамикой некоторых показателей, указанных выше, в период до и после полумарафона который был 5.11.2017.

Если внимательно посмотреть на запись вариабельности, то можно увидеть что она меняется волнообразно (см. Рис.

Чтобы оценить эти волны надо преобразовать это все в другой вид с помощью преобразования Фурье (на рис. 9 продемонстрировано применение преобразования Фурье).

Теперь мы можем, оценить мощность этих волн и сравнить их между собой см.

HF (High Frequency) - мощность высокочастотной области спектра, диапазон от 0.15 Гц до 0.4 Гц, что соответствует периоду между 2.5 сек и 7 сек. Этот показатель отражает работу парасимпатической системы. Основной медиатор - ацетилхолин, который достаточно быстро разрушается. HF отражает наше дыхание. Точнее дыхательную волну - во время вдоха интервал между сокращениями сердца уменьшается, а во время выдоха увеличивается .

С этим показателем все “хорошо”, есть много научных статей доказывающие его взаимосвязь с парасимпатической системой.

LF (Low Frequency) - мощность низкочастотной части спектра, медленные волны, диапазон от 0.04 Гц до 0.15 Гц, что соответствует периоду между 7 сек и 25 сек. Основной медиатор - норадреналин. LF отражает работу симпатической системы.

В отличие от HF тут все сложней, не совсем ясно, действительно ли он отражает симпатическую систему. Хотя в случаи 24 часового мониторинга это подтверждается следующим исследованием . Однако в большой статье говорится о сложности интерпретации и даже опровергается связь этого показателя с симпатической системой.

LF/HF - отражает баланс симпатического и парасимпатического отделов ВНС.

VLF (Very Low Frequency) - очень медленные волны, с частотой до 0.04 Гц. Период между 25 до 300 сек. До сих пор не ясно, что он отображает, особенно на 5 мин записях. Есть статьи, в которых видна корреляция с циркадными ритмами и температурой тела. У здоровых людей наблюдается увеличение мощности VLF, которое происходит ночью и пики перед пробуждением . Это увеличение автономной активности, по-видимому, коррелирует с пиком утреннего кортизола.

В статье пытаются найти корреляцию этого показателя с депрессивным состоянием. Кроме того, малая мощность в этой полосе была связана с сильным воспалением .

Анализировать VLF можно лишь при длительных записях.

TP (Total Power) - общая мощность всех волн с частотой в диапазоне от 0,0033 Гц до 0.40 Гц.

HFL - новый показатель, базирующийся на динамическом сравнении HF и LF составляющих вариабельности сердечного ритма. Показатель HLF позволяет характеризовать в динамике вегетативный баланс симпатической и парасимпатической систем. Увеличение этого показателя свидетельствовало о преобладании парасимпатической регуляции в механизмах адаптации, снижение показателя говорило о включение симпатической регуляции.

А вот так выглядит динамика, в период выступления на полумарафоне, показателей, обозначенных выше:

В следующей части статьи мы сделаем обзор различных приложений для оценки вариабельности сердечного ритма и потом перейдем непосредственно к практике.

2. Armour, J.A. and J.L. Ardell, eds. Neurocardiology., Oxford University Press: New York. The little brain on the heart, 1994. [ PDF ]

3. Баевский Прогнозирование состояний на грани нормы и патологии. “Медицина”, 1979.

4.Fred Shaffer, Rollin McCraty and Christopher L. Zerr. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability, 2014. [ NCBI ]

18. George E. Billman, The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance, 2013

Вариабельность сердечного ритма нормальная

Лекция: Анализ вариабельности сердечного ритма г А.П. Кулаичев. Компьютерная электрофизиология и функциональная диагностика. Изд. 4-е, перераб. и доп. - М.: ИНФРА-М, 2007, с.

Анализ вариабельности сердечного ритма (ВСР) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области ВСР осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

Cердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

Методы ВСР не предназначены для диагностики клинических патологий, где, как мы видели выше, хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного раздела состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его методы особенно эффективны для оценки общих функциональных возможностей организма в норме, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками (см. в конце раздела).

Исходными материалом для анализа ВСР являются непродолжительные одноканальные записи ЭКГ (от двух до нескольких десятков минут), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ.

Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

  • интервалография;
  • вариационная пульсометрия;
  • спектральный анализ;
  • корреляционая ритмография.

Другие методы. Для анализа ВСР используется и ряд менее употребительных методов, связанных с построением трехмерных скаттерграмм, дифференциальных гистограмм, вычислением автокорреляционных функций, триангуляционной интерполяции, вычислением индекса Святого Георга . В оценочном и диагностическом планах эти методы можно охарактеризовать как научно-поисковые, и они практически не привносят принципиально новой информации.

Холтеровский мониториг. Длительное мониторирование ЭКГ по Холтеру предполагает многочасовую или многосуточную одноканальную непрерывную запись ЭКГ пациента, находящегося в своих обычных жизненных условиях. Запись осуществляется портативным носимым регистратором на магнитный носитель. В связи с большой временной продолжительностью последующее исследование ЭКГ-записи осуществляется вычислительными методами. При этом обычно строится интервалограмма, определяются участки резкого изменения ритмики, ищутся экстрасистолические сокращения и асистолические паузы с подсчетом их общего количества и классификацией экстрасистол по форме и локализации.

Интервалография В этом разделе преимущественно используются методы визуального анализа графиков изменения последовательных КИ (интервалограмма или ритмограмма). Это позволяет оценить выраженность различных ритмов (в первую очередь - дыхательного ритма, см. рис. 6.11) выявить нарушения вариабельности КИ (см. рис. 6.16, 6.18, 6.19), асистолии и экстрасистолии. Так на рис. 6.21 приведена интервалограмма с тремя пропусками сердечных сокращений (три удлиненных КИ в правой части), сменяющимися экстрасистолой (укороченный КИ), за которой сразу следует четвертый пропуск сердечного сокращения.

Рис. 6.11. Интервалограмма глубокого дыхания

Рис. 6.16. Интервалограмма фибрилляции

Рис. 6.19. Интервалограмма пациента с нормальным самочувствием, но с явными нарушениями в ВСР

Интервалограмма позволяет выявить важные индивидуальные особенности действия регуляторных механизмов в реакциях на физиологические пробы. В качестве показательного примера рассмотрим противоположные типы реакций на пробу задержки дыхания. Рис. 6.22 демонстрирует реакции ускорения ЧСС при задержке дыхания. Однако у испытуемого (рис. 6.22, а) после начального резкого спада наступает стабилизация с тенденцией к некоторому удлинению КИ, в то время как у испытуемого (рис. 6.22, б) начальный резкий спад продолжается более медленным укорочением КИ, при этом проявляются нарушения вариабельности КИ с дискретным характером их чередования (что для данного испытуемого не проявлялось в состоянии релаксации). Рисунок 6.23 представляет реакции противоположного характера с удлинением КИ. Однако, если для испытуемого (рис. 6.23, а) имеет место близкая к линейной возрастающая тенденция, то для испытуемого (рис. 23, б) в этой тенденция проявляется высокоамплитудная медленноволновая активность.

Рис. 6.23. Интервалограммы для проб задержки дыхания с удлинением КИ

Вариационная пульсометрия В этом разделе преимущественно используются средства описательной статистики для оценки распределения КИ с построением гистограммы, а также ряд производных показателей, характеризующих функционирование различных регуляторных систем организма, и специальных международных индексов. Для многих из этих индексов на большом экспериментальном материале определены клинические границы нормы в зависимости от пола и возраста, а также ряд последующих числовых интервалов, отвечающих дисфункциям той или иной степени.

Гистограмма. Напомним, что гистограмма представляет собой график плотности вероятности выборочного распределения. В данном случае высота конкретного столбика выражает процент присутствующих в записи ЭКГ кардиоинтервалов заданного диапазона длительности. Горизонтальная шкала длительностей КИ для этого разбивается на последовательные интервалы равной величины (бины). Для сравнимости гистограмм международный стандарт устанавливает размер бина равным 50 мс.

Нормальная сердечная деятельность характеризуется симметричной, куполообразной и цельной гистограммой (рис. 6.24). При релаксации с неглубоким дыханием гистограмма сужается, при углублении дыхания - уширяется. При наличии пропусков сокращений или экстрасистол на гистограмме появляются отдельно стоящие фрагменты (соответственно, справа или слева от основного пика, рис. 6.25). Несимметричная форма гистограммы свидетельствует об аритмичном характере ЭКГ. Пример такой гистограммы приведен на рис. 6.26, а. Для выяснения причин такой асимметрии бывает полезно обратиться к интервалограмме (рис. 6.26, б), которая в данном случае показывает, что асимметрия определена скорее не патологической аритмией, а наличием нескольких эпизодов смены нормальной ритмики, которые могут быть вызваны эмоциональными причинами или же сменами глубины и частоты дыхания.

Рис. 6.24. Симметричная гистограмма

Рис. 6.25. Гистограмма с пропусками сокращений

а - гистограмма; б - интервалограмма

Показатели. Кроме гистографического представления в вариационной пульсометрии вычисляется и целый ряд числовых оценок: описательная статистика, показатели Баевского, индексы Каплана и ряд других.

Показатели описательной статистики дополнительно характеризуют распределение КИ:

  • размер выборки N;
  • вариационный размах dRR - разность меду максимальным и минимальным КИ;
  • среднее значение RRNN (норма в перерасчете на ЧСС составляет: 64±2,6 для возрастов 19-26 лет и 74±4,1 для возрастов 31-49 лет);
  • стандартное отклонение SDNN (норма 91±29);
  • коэффициент вариации CV=SDNN/RRNN*100%;
  • коэффициенты асимметрии и эксцесса, характеризующие симметричность гистограммы и выраженность ее центрального пика;
  • мода Mo или значение КИ, делящее всю выборку пополам, при симметричном распределении мода близка к среднему значению;
  • амплитуда моды AMo - процент КИ, попадающих в модальный бин.
  • RMSSD - корень квадратный из средней суммы квадратов разностей соседних КИ (практически совпадает со стандартным отклонением SDSD, норма 33±17), имеет устойчивые статистические свойства, что особенно актуально для коротких записей;
  • pNN50 - процент соседних кардиоинтервалов, отличающихся друг от друга более чем на 50 мс (норма 7±2%), также мало изменятся в зависимости от длины записи.

Показатели dRR, RRNN, SDNN, Mo выражаются в мс. Наиболее значимым считается AМo, отличающаяся устойчивостью к артефактам и чувствительностью к изменению функционального состояния. В норме у людей до 25 лет AМo не превышает 40%, с возрастом увеличивается на 1% каждые 5 лет, превышение 50% расценивается как патология.

Показатели Р.М. Баевского :

  • индекс вегетативного равновесия ИВР=AMo/dRR указывает на соотношение между активностью симпатического и парасимпатического отделов ВНС;
  • вегетативный показатель ритма ВПР=1/(Mo*dRR) позволяет судить о вегетативном балансе организма;
  • показатель адекватности процессов регуляции ПАПР=AMo/Mo отражает соответствие между активностью сипатического отдела ВНС и ведущим уровнем синусового узла;
  • индекс напряжения регуляторных систем ИН=AMo/(2*dRR*Mo) отражает степень централизации управления сердечным ритмом.

Наиболее значимым в практике является индекс ИН, адекватно отражающий суммарный эффект сердечной регуляции. Границы нормы составляют: 62,3±39,1 для возрастов 19-26 лет. Показатель чувствителен к усилению тонуса симпатической ВНС, небольшая нагрузка (физическая или эмоциональная) увеличивает его в 1,5-2 раза, при значительных нагрузках рост составляет 5-10 раз.

Индексы А.Я. Каплана. Разработка этих индексов преследовала задачу оценки медленно и быстроволновых компонентов вариабельности КИ без привлечения сложных методов спектрального анализа:

  • индекс дыхательной модуляции (ИДМ) оценивает степень влияния дыхательного ритма на вариабельность КИ:
  • ИДМ=(0,5* RMSSD/RRNN)*100%;
  • индекс симпато-адреналового тонуса: САТ=АМо/ИДМ*100%;
  • индекс медленноволновой аритмии: ИМА=(1-0,5*ИДМ/CV)*100%-30
  • индекс перенапряжения регуляторных систем ИПС представляет собой произведение САТ на отношение измеренного времени распространения пульсовой волны к времени распространения в состоянии покоя, диапазон значений:

40-300 - рабочее нервно–психическое напряжение;

900-3000 - перенапряжение, необходимость отдыха;

3000-10000 - перенапряжение, опасное для здоровья;

свыше- необходимость срочного выхода из текущего состояния с обращением к врачу–кардиологу.

Индекс САТ в отличие от ИН учитывает только быстрый компонент вариативности КИ, так как содержит в знаменателе не суммарный размах КИ, а нормированную оценку изменчивости между последовательными КИ - ИДМ. Таким образом, чем меньше вклад высокочастотного (дыхательного) компонента ритма сердца в суммарную вариативность КИ, тем выше индекс САТ. Он очень эффективен для общей предварительной оценки сердечной деятельности в зависимости от возраста, границы нормы составляют: 30-80 до 27 лет, 80-250 от 28 до 40 лет, 250-450 от 40 до 60 лет, и 450-800 для старших возрастов. Вычисление САТ производят на 1-2 минутных интервалах в спокойном состоянии, выход за верхнюю возрастную границу нормы является признаком нарушений в сердечной деятельности, а выход за нижнюю границу - благоприятным признаком.

Естественным дополнением САТ является ИМА, который прямо пропорционален дисперсии КИ, но не суммарной, а оставшейся за вычетом быстрого компонента вариативности КИ. Границы нормы ИМА составляют: 29,2±13,1 для возрастов 19-26 лет.

Индексы оценки отклонений в вариабельности. Большинство рассмотренных показателей являются интегральными, поскольку вычисляются на достаточно протяженных последовательностях КИ, при этом ориентированы именно на оценку средней вариабельности КИ и чувствительны к различиям в таких средних значениях. Эти интегральные оценки сглаживают локальные вариативности и хорошо работают в условиях стационарности функционального состояния, например, при релаксации. В то же время интересно было бы иметь и другие оценки, которые бы: а) хорошо работали и в условиях функциональных проб, т. е. когда сердечный ритм не стационарен, а имеет заметную динамику, например, в виде тренда; б) были чувствительные именно к крайним отклонениям, связанным с малой или повышенной вариабельностью КИ. Действительно, многие незначительные, ранние отклонения в сердечной деятельности не проявляются в покое, но могут быть выявлены в ходе функциональных проб, связанных с повышенной физиологической или психической нагрузкой.

В этом плане имеет смысл предложить один из возможных альтернативных подходов, позволяющий конструировать показатели ВСР, которые, в отличие от традиционных, можно было бы назвать дифференциальными или интервальными. Такие показатели вычисляются в коротком скользящем окне с последующим усреднением по всей последовательности КИ. Ширину скользящего окна можно выбрать порядка 10 сердечных сокращений, исходя из следующих трех соображений: 1) это соответствует трем-четырем дыханиям, что в определенной степени позволяет нивелировать ведущее влияние дыхательного ритма; 2) на таком сравнительно коротком отрезке сердечный ритм можно считать условно стационарным даже в условиях нагрузочных функциональных проб; 3) такой размер выборки обеспечивает удовлетворительную статистическую устойчивость числовых оценок и применимость параметрических критериев.

В рамках предложенного подхода нами были сконструированы два оценочных индекса: показатель сердечного стресса ПСС и показатель сердечной аритмии ПСА. Как показало дополнительное исследование, умеренное увеличение ширины скользящего окна немного снижает чувствительность этих индексов и расширяет границы нормы, но эти изменения не носят принципиального характера.

Индекс ПСС предназначен для оценки «плохой» вариабельности КИ, выражающейся в присутствии КИ одинаковой или очень близкой длительности с различием до 5 мс (примеры таких отклонений приведены на рис. 6.16, 6.18, 6.19). Такой уровень «нечувствительности» выбран из двух соображений: а) он достаточно мал, составляя 10% от стандартного 50 мс бина: б) он достаточно велик, чтобы обеспечить стабильность и сравнимость оценок для записей ЭКГ, выполненных с различным временным разрешением. Среднее значение в норме равно 16,3%, стандартное отклонение - 4,08%.

Индекс ПСА предназначен для оценки экстравариабельности КИ или уровня аритмии. Он вычисляется как процент КИ, отличающихся от среднего значения более чем на 2 стандартных отклонения. При нормальном законе распределения таких значений будет менее 2,5%. Среднее значение ПСА в норме равно 2,39%, стандартное отклонение - 0,85%.

Вычисление границ нормы. Часто при вычислении границ нормы используется достаточно произвольная процедура. Выбираются условно «здоровые» пациенты, у которых при поликлиническом наблюдении не обнаружено заболеваний. По их кардиограммам вычисляются показатели ВСР, и по этой выборке определяются средние значения и стандартные отклонения. Такую методику нельзя признать статистически корректной.

1. Как указано выше, всю выборку надо сначала очистить от выбросов. Граница отклонений и число выбросов у отдельного пациента определяется вероятностью таких выбросов, которая зависит от числа показателей и числа измерений.

2. Однако далее необходимо произвести чистку по каждому показателю отдельно, поскольку при общей нормативности данных отдельные показатели некоторых пациентов могут резко отличаться от групповых значений. Критерий стандартного отклонения здесь не подходит, поскольку сами стандартные отклонения оказываются смещенными. Такую дифференцированную чистку можно произвести при визуальном изучении графика упорядоченных по возрастанию значений показателя (график Кетле). Следует исключить значения, принадлежащие к концевым, загибающимся, разреженным участкам графика, оставив центральную, плотную и линейную его часть.

Спектральный анализ Этот метод основан на расчете амплитудного спектра (подробнее см. в разд. 4.4) ряда кардиоинтервалов.

Предварительная временная перенормировка. Однако спектральный анализ не может быть осуществлен непосредственно над интервалограммой, поскольку в строгом смысле она не является временным рядом: ее псевдоамплитуды (КИi) во времени разделены самими же КИi, т. е. ее временной шаг неравномерен. Поэтому перед вычислением спектра требуется временная перенормировка интервалограммы, которая производится следующим образом. Выберем в качестве постоянного временного шага значение минимального КИ (или его половину), которое обозначим мКИ. Проведем теперь две временные оси друг под другом: верхнюю разметим согласно последовательным КИ, а нижнюю разметим с постоянным шагом мКИ. На нижней шкале будем строить амплитуды аКИ вариабельности КИ следующим образом. Рассмотрим очередной шаг мКИi на нижней шкале, здесь может быть два варианта: 1) мКИi полностью укладывается в очередной КИj на верхней шкале, тогда принимаем аКИi=КИj; 2) мКИi накладывается на два соседних КИj и КИj+1 в процентном соотношении a% и b% (a+b=100%), тогда величину аКИi вычисляем из соответствующей пропорции представимости аКИi=(КИj/a%+КИj+1/b%)*100%. Полученный временной ряд аКИi и подвергается спектральному анализу.

Частотные диапазоны. Отдельные области полученного амплитудного спектра (амплитуды измеряются в милисекундах) представляют мощность вариативности КИ, обусловленную влиянием различных регуляторных систем организма. При спектральном анализе выделяют четыре частотных диапазона:

  • · 0,4-0,15 Гц (период колебаний 2,5-6,7 с) - высокочастотный (HF - high frequency) или дыхательный диапазон отражает активность парасимпатического кардиоингибиторного центра продолговатого мозга, реализуется через блуждающий нерв;
  • · 0,15-0,04 Гц (период колебаний 6,7-25 с) - низкочастотный (LF - low frequency) или вегетативный диапазон (медленные волны первого порядка Траубе-Геринга) отражает активность симпатических центров продолговатого мозга, реализуется через влияния СВНС и ПСВНС, но преимущественно - иннервацией от верхнего грудного (звездчатого) симпатического ганглия;
  • · 0,04-0,0033 Гц (период колебаний от 25 с до 5 мин) - сверхнизкочастотный (VLF - very low frequency) сосудисто-двигательный или васкулярный диапазон (медленные волны второго порядка Майера) отражает действие центральных эрготропных и гуморально-метаболических механизмов регуляции; реализуется через изменение в крови гормонов (ретин, ангиотензин, альдостерон и др.);
  • · 0,0033 Гц и медленнее - ультранизкочастотный (ULF) диапазон отражает активность высших центров регуляции сердечного ритма, точное происхождение регуляции неизвестно, диапазон редко исследуется в связи с необходимость выполнения длительных записей.

а - релаксация; б - глубокое дыхание На рис. 6.27 приведены спектрограммы для двух физиологических проб. В состоянии релаксации (рис. 6.27, а) с поверхностным дыханием амплитудный спектр достаточно монотонно спадает в направлении от низких частот к высоким, что говорит о сбалансированной представимости различных ритмов. При глубоком дыхании (рис. 6.27, б) резко выделяется один дыхательный пик на частоте 0,11 Гц (с периодом дыхания 9 с), его амплитуда (вариабельность) в 10 раз пре-вышает средний уровень на других частотах.

Показатели. Для характеристики спектральных диапазонов вычисляется ряд показателей:

  • частота fi и период Тi средневзвешенного пика i-го диапазона, положение такого пика определяется центром тяжести (относительно оси частот) участка графика спектра в диапазоне;
  • мощность спектра в диапазонах в процентном отношении к мощности всего спектра VLF%, LF%, HF% (мощность вычисляется как сумма амплитуд спектральных гармоник в диапазоне); границы нормы составляют, соответственно: 28,65±11,24; 33,68±9,04; 35,79±14,74;
  • среднее значение амплитуды спектра в диапазоне Аср или средняя вариативность КИ; границы нормы составляют, соответственно: 23,1±10,03, 14,2±4,96, 6,97±2,23;
  • амплитуда максимальной гармоники в диапазоне Аmax и ее период Tmax (для повышения устойчивости этих оценок необходимо предварительное сглаживание спектра);
  • нормированные мощности: LFnorm=LF/(LF+HF)*100%; HFnorm=HF/(LF+HF) *100%; коэффициент вазосимпатического баланса LF/HF; границы нормы составляют, соответственно: 50,6±9,4; 49,4±9.4; 0,7±1,5.

Погрешности спектра КИ. Остановимся на некоторых инструментальных погрешностях спектрального анализа (см. в разд. 4.4) применительно к интервалограмме. Во первых, мощности в частотных диапазонах существенно зависят от «реального» разрешения по частоте, которое в свою очередь зависит, по крайней мере, от трех факторов: от длины записи ЭКГ, от величин КИ и от выбранного шага временной перенормировки интервалограммы. Это уже само по себе накладывает ограничения на сравнимость различных спектров. К тому же утечка мощности от высокоамплитудных пиков и боковые пики вследствие амплитудной модуляции ритмики может простираться далеко в соседние диапазоны, внося значительные и неконтролируемые искажения.

Во вторых, при записи ЭКГ не нормируется главный действующий фактор - дыхательный ритм, который может иметь разную частоту и глубину (частота дыхания регламентируется только в пробах глубокого дыхания и гипервентиляции). А о сравнимости спектров в диапазонах HF и LF можно было бы вести речь только тогда, когда пробы выполняются с фиксированным периодом и амплитудой дыхания. Для учета и контроля дыхательного ритма следовало бы запись ЭКГ дополнять регистрацией грудного и брюшного дыхания.

И наконец, само разбиение спектра КИ на существующие диапазоны достаточно условно и статистически никак не обосновано. Для такого обоснования следовало бы на большом экспериментальном материале опробовать различные разбиения и выбрать наиболее значимое и устойчивое в плане факторной интерпретации.

Вызывает также определенное недоумение повсеместное использование именно оценок мощности СА. Такие показатели плохо согласуются друг с другом, поскольку прямо зависят от размеров частотных диапазонов, которые в свою очередь различаются в 2-6 раз. В этом отношении предпочтительнее использование средних амплитуд спектра, которые в свою очередь не плохо коррелируют с рядом показателей ВП в диапазоне значений от 0,4 до 0,7.

Корреляционая ритмография Этот раздел включает преимущественно построение и визуальное изучения двумерных скаттерграмм или диаграмм рассеяния, представляющих зависимость предшествующих КИ от последующих. Каждая точка на этом графике (рис. 6.28) обозначает соотношение между длительностями предыдущего КИi (по оси Y) и следующего КИi+1 (по оси X).

Показатели. Для характеристики облака рассеяния вычисляют положение его центра, т. е. среднее значение КИ (М), а также размеры продольной L и поперечной w осей и их отношение w/L. Если в качестве КИ взять чистую синусоиду (идеальный случай влияния только одного ритма), то w будет составлять 2,5% от L. В качестве оценок w и L обычно используют стандартные отклонения a и b по этим осям.

Для лучшей визуальной сравнимости на скаттерграмме строят эллипс (рис. 6.28) с размером осей 2L, 2w (при небольшом объеме выборки) или 3L, 3w (при большом объеме выборки). Статистическая вероятность выхода за два и три стандартные отклонения составляет 4,56 и 0,26% при нормальном законе распределения КИ.

Норма и отклонения. При наличии резких нарушений ВСР диаграмма рассеяния приобретает случайный характер (рис. 6.29, а) или же распадается на отдельные фрагменты (рис. 6.29, б): так в случае экстрасистолии появляются симметричные относительно диагонали группы точек, сдвинутые в область коротких КИ от основного облака рассеяния, а в случае асистолии появляются симметричные группы точек в области коротких КИ. В этих случаях скаттерграмма не дает никакой новой информации по сравнению с интервалограммой и гистограммой.

а - выраженная аритмия; б - экстрасистолия и асистолия Поэтому скаттерграммы полезны преимущественно в условиях нормы для взаимных сравнений различных испытуемых в различных функциональных пробах. Отдельной областью такого применения является тестирование тренированности и функциональной готовности к физи-ческим и психологическим нагрузкам (см. далее).

Соотношение показателей Для оценки значимости и соотношения различных показателей ВСР в 2006 г. нами было проведено специальное статистическое исследование. Исходными данными являлись 378 записей ЭКГ, выполненных в состоянии релаксации у спортсменов высшей квалификации (футбол, баскетбол, хоккей, шорт-трек, дзюдо) . Результаты корреляционного и факторного анализа позволили сделать следующие выводы:

1. Набор наиболее употребительных в практике показателей ВСР избыточен, более 41% в нем (15 из 36) составляют функционально связанные и высококоррелированные показатели:

· функционально зависимыми являются следующие пары показателей: ЧСС-RRNN, Мо-RRNN, LF/HF-HFnorm, LFnorm-HFnorm, fVLF-TVLF, fLF-TLF, fHF-THF, w/L-ИМА, Kr-ИМА, Kr-w/L;

· высоко коррелированными являются следующие показатели (в качестве множителей указаны коэффициенты корреляции): Мо-0,96*ЧСС, АМо-0,93*ИВР-0,93*ПАПР, ИВР-0,96*ИН, ВПР-0,95*ИН, ПАПР-0,95*ИН-0,91*ВПР, dХ-0,92*SDNN, RMSSD-0,91*рNN50, ИДМ-0,91*HF%, ИДМ-0,91*АсрHF, w=0,91*рNN50, Br=0,91*w/L, Br=0,91*Kr, LF/HF=0,9*VL%.

В частности, все показатели корреляционной ритмографии в указанном смысле дублируются показателями вариационной пульсометрии, тем самым этот раздел являет лишь удобную форму визуального представления информации (скаттерграмму).

2. Показатели вариационной пульсометрии и спектрального анализа отражают различные и ортогональные факторные структуры.

3. Среди показателей вариационной пульсометрии наибольшую факторную значимость имеют две группы показателей: а) САТ, ПСС, ИН, SDNN, pNN50, ИДМ, характеризующие различные аспекты напряженности сердечной деятельности; б) ИМА, ПСА, характеризующие соотношение ритмичности-аритмичности сердечной деятельности;

4. Значимость диапазонов LF и VLF для функциональной диагностики сомнительна, поскольку факторное соответствие их показателей неоднозначно, а сами спектры подвержены влиянию многочисленных и неконтролируемых искажений.

5. Вместо неустойчивых и неоднозначных спектральных показателей возможно использование ИДМ и ИМА, отражающих дыхательные и медленноволновые компоненты сердечной вариативности. Вместо оценок мощности в диапазонах предпочтительнее использование средних амплитуд спектра.

Оценка тренированности Одним из эффективных методов оценки тренированности и функциональной готовности (спортсменов и других профессионалов, работа которых сопряжена с повышенными физическими и психологическими нагрузками) является анализ динамики изменения ЧСС в процессе физической нагрузки большей интенсивности и в период постнагрузочного восстановления. Эта динамика напрямую отражает скоростные и действенные характеристики биохимических обменных процессов, протекающих в жидкостной среде организма. В стационарных условиях физическая нагрузка обычно дается в форме велоэргономометрических испытаний, в условиях же реальных соревнований возможно преимущественно исследование восстановительных процессов.

Биохимия мышечного энергообеспечения. Энергия, получаемая организмом от расщепления продуктов питания, хранится и транс-портируется к клеткам в виде высокоэнергетического соединения АТФ (адренозинтрифосфорная кислота). Эволюция сформировала три энергообеспечивающие функциональные системы:

  • 1. Анаэробно-алактатная система (АТФ - КФ или креатинфосфат) использует АТФ мышц на начальной фазе работы с последующим восстановлением запасов АТФ в мышцах путем расщепления КФ (1 моль КФ = 1 моль АТФ). Запасы АТФ и КФ обеспечивают только краткие энергетические потребности (3-15 с).
  • 2. Анаэробно-лактатная (гликолитическая) система осуществляет энергообеспечение путем расщепления глюкозы или гликогена, сопровождаемое образованием пировиноградной кислоты с последующим ее преобразованием в молочную кислоту, которая, быстро разлагаясь, образует калиевые и натриевые соли, имеющие общее название лактата. Глюкоза и гликоген (образуется в печени из глюкозы) трансформируются в глюкозо-6-фосфат, а затем - в АТФ (1 моль глюкозы = 2 моля АТФ, 1 моль гликогена = 3 моля АТФ).
  • 3. Аэробно-окислительная система использует кислород для окисления углеводов и жиров для обеспечения длительной мышечной работы с образованием АТФ в митохондриях.

В состоянии покоя энергия образуется расщеплением практически одинакового количества жиров и углеводов с образованием глюкозы. При кратковременной интенсивной нагрузке АТФ почти исключительно образуется за счет расщепления углеводов (самая «быстрая» энергия). Содержание углеводов в печени и скелетных мышцах обеспечивает образование не более 2000 ккал энергии, позволяющей пробежать около 32 км. Хотя жиров в организме значительно больше, чем углеводов, но жировой обмен (глюконеогенез) с образованием жирных кислот, а затем и АТФ неизмеримо более энергетически медленный.

Тип мышечных волокон определяет их окислительную способность. Так мышцы, состоящие из БС-волокон, более специфичны к выпол-нению физической нагрузки высокой интенсивности за счет использования энергии гликолитической системы организма. Мышцы же, состоящие из МС-волокон, содержат большее количество митохондрий и окислительных ферментов, что обеспечивает выполнение большего объема физической нагрузки с использованием аэробного обмена. Физическая нагрузка, направленная на развитие выносливости, способствует увеличению митохондрий и окислительных ферментов в МС-волокнах, но особенно - в БС-волокнах. При этом увеличивается нагрузка на систему транспорта кислорода к работающим мышцам.

Накапливающийся в жидкой среде организма лактат «подкисляет» мышечные волокна и тормозит дальнейшее расщепление гликогена, а также снижает способность мышц связывать кальций, что препятствует их сокращению. В интенсивных видах спорта аккумулирование лактата достигает 18-22 ммоль/кг при норме в 2,5-4 ммоль/кг. Предельными концентрациями лактата особенно отличаются такие виды спорта, как бокс и хоккей, а наблюдение их в клинической практике характерно для прединфарктых состояний.

Максимум выброса лактата в кровь происходит на 6-ой минуте после интенсивной нагрузки. Соответственно этому достигает максимума и ЧСС. Далее концентрация лактата в крови и ЧСС падает синхронно. Поэтому по динамике ЧСС можно судить о функциональных способностях организма по уменьшению концентрации лактата, а следовательно - и о эффективности энерговосстанавливащеего метаболизма.

Средства анализа. В нагрузочный и восстановительный период проводят ряд поминутных i=1,2,3. записей ЭКГ. По результатам строят скаттерграммы, которые совмещают на одном графике (рис. 6.30), по которому визуально оценивают динамику изменения показателей КИ. Для каждой i-й скаттерграммы вычисляют числовые показатели М, a, b, b/a. Для оценки и сравнения тренированности в динамике изменения каждого такого показателя Рi вычисляют поинтервальные оценки вида: (Рi-Pmax)/(Po-Pmax), где Po - значение показателя в состоянии релаксации; Pmax- значение показателя в максимуме физической нагрузки.

Рис. 6.30. Совмещенные скаттерграммы постнагрузочных 1-секундных интервалов восстановления и состояния релаксации

Литература 5. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: Медиком, 1997.

6. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: Медиком, 2000

7. Жирмунская Е.А. Клиническая электроэнцефалография. М.: 1991.

13. Макс Ж. Методика и техника обработки сигналов при техниче-ских измерениях. М.: Мир, 1983.

17. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, 1982. Т. 1, 2.

18. К. Прибрам. Языки мозга. М.: Прогресс, 1975.

20. Рандалл Р.Б. Частотный анализ. Брюль и Къер, 1989.

22. Русинов В.С., Гриндель О.М., Болдырева Г.Н., Вакер Е.М. Биопотенциалы головного мозга. Математический анализ. М.: Медицина, 1987.

23. А.Я. Каплан. Проблема сегментного описания электроэнцефалограммы человека//Физиология человека. 1999. Т.25. №1.

24. A.Ya. Kaplan, Al.A. Fingelkurts, An.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky. Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges//Signal processing. Special Issue: Neuronal Coordination in the Brain: A Signal Processing Perspective. 2005. №85.

25. А.Я. Каплан. Нестационарность ЭЭГ: методологический и экспериментальный анализ//Успехи физиологических наук. 1998. Т.29. №3.

26. Каплан А.Я., Борисов С.В.. Динамика сегментных характеристик альфа-активности ЭЭГ человека в покое и при когнитивных нагрузках//Журнал ВНД. 2003. №53.

27.Каплан А.Я., Борисов С.В., Желиговский В.А.. Классификация ЭЭГ подростков по спектральным и сегментным характеристикам в норме и при расстройстве шизофренического спектра//Журнал ВНД. 2005. Т.55. №4.

28. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А.. Структурная организация альфа-активности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Журнал ВНД. 2005. Т.55. №3.

29. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А. Анализ структурной синхронности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Физиология человека. 2005. Т.31. №3.

38. Кулаичев А.П. Некоторые методические проблемы частотного анализа ЭЭГ//Журнал ВНД. 1997. № 5.

43. Кулаичев А.П. Методология автоматизации психофизиологических экспериментов/сб. Моделирование и анализ данных. М.: РУСАВИА, 2004.

44. Кулаичев А.П. Компьютерная электрофизиология. Изд. 3-е. М.: Изд-во МГУ, 2002.

Анализ вариабельности сердечного ритма (ВСР) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области ВСР осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

Cердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

Методы ВСР не предназначены для диагностики клинических патологий, где, как мы видели выше, хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного раздела состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его методы особенно эффективны для оценки общих функциональных возможностей организма в норме, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками (см. в конце раздела).

Исходными материалом для анализа ВСР являются непродолжительные одноканальные записи ЭКГ (от двух до нескольких десятков минут), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ.

Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

  • интервалография;
  • вариационная пульсометрия;
  • спектральный анализ;
  • корреляционая ритмография.

Другие методы. Для анализа ВСР используется и ряд менее употребительных методов, связанных с построением трехмерных скаттерграмм, дифференциальных гистограмм, вычислением автокорреляционных функций, триангуляционной интерполяции, вычислением индекса Святого Георга . В оценочном и диагностическом планах эти методы можно охарактеризовать как научно-поисковые, и они практически не привносят принципиально новой информации.

Холтеровский мониториг. Длительное мониторирование ЭКГ по Холтеру предполагает многочасовую или многосуточную одноканальную непрерывную запись ЭКГ пациента, находящегося в своих обычных жизненных условиях. Запись осуществляется портативным носимым регистратором на магнитный носитель. В связи с большой временной продолжительностью последующее исследование ЭКГ-записи осуществляется вычислительными методами. При этом обычно строится интервалограмма, определяются участки резкого изменения ритмики, ищутся экстрасистолические сокращения и асистолические паузы с подсчетом их общего количества и классификацией экстрасистол по форме и локализации.

Интервалография В этом разделе преимущественно используются методы визуального анализа графиков изменения последовательных КИ (интервалограмма или ритмограмма). Это позволяет оценить выраженность различных ритмов (в первую очередь - дыхательного ритма, см. рис. 6.11) выявить нарушения вариабельности КИ (см. рис. 6.16, 6.18, 6.19), асистолии и экстрасистолии. Так на рис. 6.21 приведена интервалограмма с тремя пропусками сердечных сокращений (три удлиненных КИ в правой части), сменяющимися экстрасистолой (укороченный КИ), за которой сразу следует четвертый пропуск сердечного сокращения.

Рис. 6.11. Интервалограмма глубокого дыхания

Рис. 6.16. Интервалограмма фибрилляции

Рис. 6.19. Интервалограмма пациента с нормальным самочувствием, но с явными нарушениями в ВСР

Интервалограмма позволяет выявить важные индивидуальные особенности действия регуляторных механизмов в реакциях на физиологические пробы. В качестве показательного примера рассмотрим противоположные типы реакций на пробу задержки дыхания. Рис. 6.22 демонстрирует реакции ускорения ЧСС при задержке дыхания. Однако у испытуемого (рис. 6.22, а) после начального резкого спада наступает стабилизация с тенденцией к некоторому удлинению КИ, в то время как у испытуемого (рис. 6.22, б) начальный резкий спад продолжается более медленным укорочением КИ, при этом проявляются нарушения вариабельности КИ с дискретным характером их чередования (что для данного испытуемого не проявлялось в состоянии релаксации). Рисунок 6.23 представляет реакции противоположного характера с удлинением КИ. Однако, если для испытуемого (рис. 6.23, а) имеет место близкая к линейной возрастающая тенденция, то для испытуемого (рис. 23, б) в этой тенденция проявляется высокоамплитудная медленноволновая активность.

Рис. 6.23. Интервалограммы для проб задержки дыхания с удлинением КИ

Вариационная пульсометрия В этом разделе преимущественно используются средства описательной статистики для оценки распределения КИ с построением гистограммы, а также ряд производных показателей, характеризующих функционирование различных регуляторных систем организма, и специальных международных индексов. Для многих из этих индексов на большом экспериментальном материале определены клинические границы нормы в зависимости от пола и возраста, а также ряд последующих числовых интервалов, отвечающих дисфункциям той или иной степени.

Гистограмма. Напомним, что гистограмма представляет собой график плотности вероятности выборочного распределения. В данном случае высота конкретного столбика выражает процент присутствующих в записи ЭКГ кардиоинтервалов заданного диапазона длительности. Горизонтальная шкала длительностей КИ для этого разбивается на последовательные интервалы равной величины (бины). Для сравнимости гистограмм международный стандарт устанавливает размер бина равным 50 мс.

Нормальная сердечная деятельность характеризуется симметричной, куполообразной и цельной гистограммой (рис. 6.24). При релаксации с неглубоким дыханием гистограмма сужается, при углублении дыхания - уширяется. При наличии пропусков сокращений или экстрасистол на гистограмме появляются отдельно стоящие фрагменты (соответственно, справа или слева от основного пика, рис. 6.25). Несимметричная форма гистограммы свидетельствует об аритмичном характере ЭКГ. Пример такой гистограммы приведен на рис. 6.26, а. Для выяснения причин такой асимметрии бывает полезно обратиться к интервалограмме (рис. 6.26, б), которая в данном случае показывает, что асимметрия определена скорее не патологической аритмией, а наличием нескольких эпизодов смены нормальной ритмики, которые могут быть вызваны эмоциональными причинами или же сменами глубины и частоты дыхания.

Рис. 6.24. Симметричная гистограмма

Рис. 6.25. Гистограмма с пропусками сокращений

а - гистограмма; б - интервалограмма

Показатели. Кроме гистографического представления в вариационной пульсометрии вычисляется и целый ряд числовых оценок: описательная статистика, показатели Баевского, индексы Каплана и ряд других.

Показатели описательной статистики дополнительно характеризуют распределение КИ:

  • размер выборки N;
  • вариационный размах dRR - разность меду максимальным и минимальным КИ;
  • среднее значение RRNN (норма в перерасчете на ЧСС составляет: 64±2,6 для возрастов 19-26 лет и 74±4,1 для возрастов 31-49 лет);
  • стандартное отклонение SDNN (норма 91±29);
  • коэффициент вариации CV=SDNN/RRNN*100%;
  • коэффициенты асимметрии и эксцесса, характеризующие симметричность гистограммы и выраженность ее центрального пика;
  • мода Mo или значение КИ, делящее всю выборку пополам, при симметричном распределении мода близка к среднему значению;
  • амплитуда моды AMo - процент КИ, попадающих в модальный бин.
  • RMSSD - корень квадратный из средней суммы квадратов разностей соседних КИ (практически совпадает со стандартным отклонением SDSD, норма 33±17), имеет устойчивые статистические свойства, что особенно актуально для коротких записей;
  • pNN50 - процент соседних кардиоинтервалов, отличающихся друг от друга более чем на 50 мс (норма 7±2%), также мало изменятся в зависимости от длины записи.

Показатели dRR, RRNN, SDNN, Mo выражаются в мс. Наиболее значимым считается AМo, отличающаяся устойчивостью к артефактам и чувствительностью к изменению функционального состояния. В норме у людей до 25 лет AМo не превышает 40%, с возрастом увеличивается на 1% каждые 5 лет, превышение 50% расценивается как патология.

Показатели Р.М. Баевского :

  • индекс вегетативного равновесия ИВР=AMo/dRR указывает на соотношение между активностью симпатического и парасимпатического отделов ВНС;
  • вегетативный показатель ритма ВПР=1/(Mo*dRR) позволяет судить о вегетативном балансе организма;
  • показатель адекватности процессов регуляции ПАПР=AMo/Mo отражает соответствие между активностью сипатического отдела ВНС и ведущим уровнем синусового узла;
  • индекс напряжения регуляторных систем ИН=AMo/(2*dRR*Mo) отражает степень централизации управления сердечным ритмом.

Наиболее значимым в практике является индекс ИН, адекватно отражающий суммарный эффект сердечной регуляции. Границы нормы составляют: 62,3±39,1 для возрастов 19-26 лет. Показатель чувствителен к усилению тонуса симпатической ВНС, небольшая нагрузка (физическая или эмоциональная) увеличивает его в 1,5-2 раза, при значительных нагрузках рост составляет 5-10 раз.

Индексы А.Я. Каплана. Разработка этих индексов преследовала задачу оценки медленно и быстроволновых компонентов вариабельности КИ без привлечения сложных методов спектрального анализа:

  • индекс дыхательной модуляции (ИДМ) оценивает степень влияния дыхательного ритма на вариабельность КИ:
  • ИДМ=(0,5* RMSSD/RRNN)*100%;
  • индекс симпато-адреналового тонуса: САТ=АМо/ИДМ*100%;
  • индекс медленноволновой аритмии: ИМА=(1-0,5*ИДМ/CV)*100%-30
  • индекс перенапряжения регуляторных систем ИПС представляет собой произведение САТ на отношение измеренного времени распространения пульсовой волны к времени распространения в состоянии покоя, диапазон значений:

40-300 - рабочее нервно–психическое напряжение;

900-3000 - перенапряжение, необходимость отдыха;

3000-10000 - перенапряжение, опасное для здоровья;

свыше- необходимость срочного выхода из текущего состояния с обращением к врачу–кардиологу.

Индекс САТ в отличие от ИН учитывает только быстрый компонент вариативности КИ, так как содержит в знаменателе не суммарный размах КИ, а нормированную оценку изменчивости между последовательными КИ - ИДМ. Таким образом, чем меньше вклад высокочастотного (дыхательного) компонента ритма сердца в суммарную вариативность КИ, тем выше индекс САТ. Он очень эффективен для общей предварительной оценки сердечной деятельности в зависимости от возраста, границы нормы составляют: 30-80 до 27 лет, 80-250 от 28 до 40 лет, 250-450 от 40 до 60 лет, и 450-800 для старших возрастов. Вычисление САТ производят на 1-2 минутных интервалах в спокойном состоянии, выход за верхнюю возрастную границу нормы является признаком нарушений в сердечной деятельности, а выход за нижнюю границу - благоприятным признаком.

Естественным дополнением САТ является ИМА, который прямо пропорционален дисперсии КИ, но не суммарной, а оставшейся за вычетом быстрого компонента вариативности КИ. Границы нормы ИМА составляют: 29,2±13,1 для возрастов 19-26 лет.

Индексы оценки отклонений в вариабельности. Большинство рассмотренных показателей являются интегральными, поскольку вычисляются на достаточно протяженных последовательностях КИ, при этом ориентированы именно на оценку средней вариабельности КИ и чувствительны к различиям в таких средних значениях. Эти интегральные оценки сглаживают локальные вариативности и хорошо работают в условиях стационарности функционального состояния, например, при релаксации. В то же время интересно было бы иметь и другие оценки, которые бы: а) хорошо работали и в условиях функциональных проб, т. е. когда сердечный ритм не стационарен, а имеет заметную динамику, например, в виде тренда; б) были чувствительные именно к крайним отклонениям, связанным с малой или повышенной вариабельностью КИ. Действительно, многие незначительные, ранние отклонения в сердечной деятельности не проявляются в покое, но могут быть выявлены в ходе функциональных проб, связанных с повышенной физиологической или психической нагрузкой.

В этом плане имеет смысл предложить один из возможных альтернативных подходов, позволяющий конструировать показатели ВСР, которые, в отличие от традиционных, можно было бы назвать дифференциальными или интервальными. Такие показатели вычисляются в коротком скользящем окне с последующим усреднением по всей последовательности КИ. Ширину скользящего окна можно выбрать порядка 10 сердечных сокращений, исходя из следующих трех соображений: 1) это соответствует трем-четырем дыханиям, что в определенной степени позволяет нивелировать ведущее влияние дыхательного ритма; 2) на таком сравнительно коротком отрезке сердечный ритм можно считать условно стационарным даже в условиях нагрузочных функциональных проб; 3) такой размер выборки обеспечивает удовлетворительную статистическую устойчивость числовых оценок и применимость параметрических критериев.

В рамках предложенного подхода нами были сконструированы два оценочных индекса: показатель сердечного стресса ПСС и показатель сердечной аритмии ПСА. Как показало дополнительное исследование, умеренное увеличение ширины скользящего окна немного снижает чувствительность этих индексов и расширяет границы нормы, но эти изменения не носят принципиального характера.

Индекс ПСС предназначен для оценки «плохой» вариабельности КИ, выражающейся в присутствии КИ одинаковой или очень близкой длительности с различием до 5 мс (примеры таких отклонений приведены на рис. 6.16, 6.18, 6.19). Такой уровень «нечувствительности» выбран из двух соображений: а) он достаточно мал, составляя 10% от стандартного 50 мс бина: б) он достаточно велик, чтобы обеспечить стабильность и сравнимость оценок для записей ЭКГ, выполненных с различным временным разрешением. Среднее значение в норме равно 16,3%, стандартное отклонение - 4,08%.

Индекс ПСА предназначен для оценки экстравариабельности КИ или уровня аритмии. Он вычисляется как процент КИ, отличающихся от среднего значения более чем на 2 стандартных отклонения. При нормальном законе распределения таких значений будет менее 2,5%. Среднее значение ПСА в норме равно 2,39%, стандартное отклонение - 0,85%.

Вычисление границ нормы. Часто при вычислении границ нормы используется достаточно произвольная процедура. Выбираются условно «здоровые» пациенты, у которых при поликлиническом наблюдении не обнаружено заболеваний. По их кардиограммам вычисляются показатели ВСР, и по этой выборке определяются средние значения и стандартные отклонения. Такую методику нельзя признать статистически корректной.

1. Как указано выше, всю выборку надо сначала очистить от выбросов. Граница отклонений и число выбросов у отдельного пациента определяется вероятностью таких выбросов, которая зависит от числа показателей и числа измерений.

2. Однако далее необходимо произвести чистку по каждому показателю отдельно, поскольку при общей нормативности данных отдельные показатели некоторых пациентов могут резко отличаться от групповых значений. Критерий стандартного отклонения здесь не подходит, поскольку сами стандартные отклонения оказываются смещенными. Такую дифференцированную чистку можно произвести при визуальном изучении графика упорядоченных по возрастанию значений показателя (график Кетле). Следует исключить значения, принадлежащие к концевым, загибающимся, разреженным участкам графика, оставив центральную, плотную и линейную его часть.

Спектральный анализ Этот метод основан на расчете амплитудного спектра (подробнее см. в разд. 4.4) ряда кардиоинтервалов.

Предварительная временная перенормировка. Однако спектральный анализ не может быть осуществлен непосредственно над интервалограммой, поскольку в строгом смысле она не является временным рядом: ее псевдоамплитуды (КИi) во времени разделены самими же КИi, т. е. ее временной шаг неравномерен. Поэтому перед вычислением спектра требуется временная перенормировка интервалограммы, которая производится следующим образом. Выберем в качестве постоянного временного шага значение минимального КИ (или его половину), которое обозначим мКИ. Проведем теперь две временные оси друг под другом: верхнюю разметим согласно последовательным КИ, а нижнюю разметим с постоянным шагом мКИ. На нижней шкале будем строить амплитуды аКИ вариабельности КИ следующим образом. Рассмотрим очередной шаг мКИi на нижней шкале, здесь может быть два варианта: 1) мКИi полностью укладывается в очередной КИj на верхней шкале, тогда принимаем аКИi=КИj; 2) мКИi накладывается на два соседних КИj и КИj+1 в процентном соотношении a% и b% (a+b=100%), тогда величину аКИi вычисляем из соответствующей пропорции представимости аКИi=(КИj/a%+КИj+1/b%)*100%. Полученный временной ряд аКИi и подвергается спектральному анализу.

Частотные диапазоны. Отдельные области полученного амплитудного спектра (амплитуды измеряются в милисекундах) представляют мощность вариативности КИ, обусловленную влиянием различных регуляторных систем организма. При спектральном анализе выделяют четыре частотных диапазона:

  • · 0,4-0,15 Гц (период колебаний 2,5-6,7 с) - высокочастотный (HF - high frequency) или дыхательный диапазон отражает активность парасимпатического кардиоингибиторного центра продолговатого мозга, реализуется через блуждающий нерв;
  • · 0,15-0,04 Гц (период колебаний 6,7-25 с) - низкочастотный (LF - low frequency) или вегетативный диапазон (медленные волны первого порядка Траубе-Геринга) отражает активность симпатических центров продолговатого мозга, реализуется через влияния СВНС и ПСВНС, но преимущественно - иннервацией от верхнего грудного (звездчатого) симпатического ганглия;
  • · 0,04-0,0033 Гц (период колебаний от 25 с до 5 мин) - сверхнизкочастотный (VLF - very low frequency) сосудисто-двигательный или васкулярный диапазон (медленные волны второго порядка Майера) отражает действие центральных эрготропных и гуморально-метаболических механизмов регуляции; реализуется через изменение в крови гормонов (ретин, ангиотензин, альдостерон и др.);
  • · 0,0033 Гц и медленнее - ультранизкочастотный (ULF) диапазон отражает активность высших центров регуляции сердечного ритма, точное происхождение регуляции неизвестно, диапазон редко исследуется в связи с необходимость выполнения длительных записей.

а - релаксация; б - глубокое дыхание На рис. 6.27 приведены спектрограммы для двух физиологических проб. В состоянии релаксации (рис. 6.27, а) с поверхностным дыханием амплитудный спектр достаточно монотонно спадает в направлении от низких частот к высоким, что говорит о сбалансированной представимости различных ритмов. При глубоком дыхании (рис. 6.27, б) резко выделяется один дыхательный пик на частоте 0,11 Гц (с периодом дыхания 9 с), его амплитуда (вариабельность) в 10 раз пре-вышает средний уровень на других частотах.

Показатели. Для характеристики спектральных диапазонов вычисляется ряд показателей:

  • частота fi и период Тi средневзвешенного пика i-го диапазона, положение такого пика определяется центром тяжести (относительно оси частот) участка графика спектра в диапазоне;
  • мощность спектра в диапазонах в процентном отношении к мощности всего спектра VLF%, LF%, HF% (мощность вычисляется как сумма амплитуд спектральных гармоник в диапазоне); границы нормы составляют, соответственно: 28,65±11,24; 33,68±9,04; 35,79±14,74;
  • среднее значение амплитуды спектра в диапазоне Аср или средняя вариативность КИ; границы нормы составляют, соответственно: 23,1±10,03, 14,2±4,96, 6,97±2,23;
  • амплитуда максимальной гармоники в диапазоне Аmax и ее период Tmax (для повышения устойчивости этих оценок необходимо предварительное сглаживание спектра);
  • нормированные мощности: LFnorm=LF/(LF+HF)*100%; HFnorm=HF/(LF+HF) *100%; коэффициент вазосимпатического баланса LF/HF; границы нормы составляют, соответственно: 50,6±9,4; 49,4±9.4; 0,7±1,5.

Погрешности спектра КИ. Остановимся на некоторых инструментальных погрешностях спектрального анализа (см. в разд. 4.4) применительно к интервалограмме. Во первых, мощности в частотных диапазонах существенно зависят от «реального» разрешения по частоте, которое в свою очередь зависит, по крайней мере, от трех факторов: от длины записи ЭКГ, от величин КИ и от выбранного шага временной перенормировки интервалограммы. Это уже само по себе накладывает ограничения на сравнимость различных спектров. К тому же утечка мощности от высокоамплитудных пиков и боковые пики вследствие амплитудной модуляции ритмики может простираться далеко в соседние диапазоны, внося значительные и неконтролируемые искажения.

Во вторых, при записи ЭКГ не нормируется главный действующий фактор - дыхательный ритм, который может иметь разную частоту и глубину (частота дыхания регламентируется только в пробах глубокого дыхания и гипервентиляции). А о сравнимости спектров в диапазонах HF и LF можно было бы вести речь только тогда, когда пробы выполняются с фиксированным периодом и амплитудой дыхания. Для учета и контроля дыхательного ритма следовало бы запись ЭКГ дополнять регистрацией грудного и брюшного дыхания.

И наконец, само разбиение спектра КИ на существующие диапазоны достаточно условно и статистически никак не обосновано. Для такого обоснования следовало бы на большом экспериментальном материале опробовать различные разбиения и выбрать наиболее значимое и устойчивое в плане факторной интерпретации.

Вызывает также определенное недоумение повсеместное использование именно оценок мощности СА. Такие показатели плохо согласуются друг с другом, поскольку прямо зависят от размеров частотных диапазонов, которые в свою очередь различаются в 2-6 раз. В этом отношении предпочтительнее использование средних амплитуд спектра, которые в свою очередь не плохо коррелируют с рядом показателей ВП в диапазоне значений от 0,4 до 0,7.

Корреляционая ритмография Этот раздел включает преимущественно построение и визуальное изучения двумерных скаттерграмм или диаграмм рассеяния, представляющих зависимость предшествующих КИ от последующих. Каждая точка на этом графике (рис. 6.28) обозначает соотношение между длительностями предыдущего КИi (по оси Y) и следующего КИi+1 (по оси X).

Показатели. Для характеристики облака рассеяния вычисляют положение его центра, т. е. среднее значение КИ (М), а также размеры продольной L и поперечной w осей и их отношение w/L. Если в качестве КИ взять чистую синусоиду (идеальный случай влияния только одного ритма), то w будет составлять 2,5% от L. В качестве оценок w и L обычно используют стандартные отклонения a и b по этим осям.

Для лучшей визуальной сравнимости на скаттерграмме строят эллипс (рис. 6.28) с размером осей 2L, 2w (при небольшом объеме выборки) или 3L, 3w (при большом объеме выборки). Статистическая вероятность выхода за два и три стандартные отклонения составляет 4,56 и 0,26% при нормальном законе распределения КИ.

Норма и отклонения. При наличии резких нарушений ВСР диаграмма рассеяния приобретает случайный характер (рис. 6.29, а) или же распадается на отдельные фрагменты (рис. 6.29, б): так в случае экстрасистолии появляются симметричные относительно диагонали группы точек, сдвинутые в область коротких КИ от основного облака рассеяния, а в случае асистолии появляются симметричные группы точек в области коротких КИ. В этих случаях скаттерграмма не дает никакой новой информации по сравнению с интервалограммой и гистограммой.

а - выраженная аритмия; б - экстрасистолия и асистолия Поэтому скаттерграммы полезны преимущественно в условиях нормы для взаимных сравнений различных испытуемых в различных функциональных пробах. Отдельной областью такого применения является тестирование тренированности и функциональной готовности к физи-ческим и психологическим нагрузкам (см. далее).

Соотношение показателей Для оценки значимости и соотношения различных показателей ВСР в 2006 г. нами было проведено специальное статистическое исследование. Исходными данными являлись 378 записей ЭКГ, выполненных в состоянии релаксации у спортсменов высшей квалификации (футбол, баскетбол, хоккей, шорт-трек, дзюдо) . Результаты корреляционного и факторного анализа позволили сделать следующие выводы:

1. Набор наиболее употребительных в практике показателей ВСР избыточен, более 41% в нем (15 из 36) составляют функционально связанные и высококоррелированные показатели:

· функционально зависимыми являются следующие пары показателей: ЧСС-RRNN, Мо-RRNN, LF/HF-HFnorm, LFnorm-HFnorm, fVLF-TVLF, fLF-TLF, fHF-THF, w/L-ИМА, Kr-ИМА, Kr-w/L;

· высоко коррелированными являются следующие показатели (в качестве множителей указаны коэффициенты корреляции): Мо-0,96*ЧСС, АМо-0,93*ИВР-0,93*ПАПР, ИВР-0,96*ИН, ВПР-0,95*ИН, ПАПР-0,95*ИН-0,91*ВПР, dХ-0,92*SDNN, RMSSD-0,91*рNN50, ИДМ-0,91*HF%, ИДМ-0,91*АсрHF, w=0,91*рNN50, Br=0,91*w/L, Br=0,91*Kr, LF/HF=0,9*VL%.

В частности, все показатели корреляционной ритмографии в указанном смысле дублируются показателями вариационной пульсометрии, тем самым этот раздел являет лишь удобную форму визуального представления информации (скаттерграмму).

2. Показатели вариационной пульсометрии и спектрального анализа отражают различные и ортогональные факторные структуры.

3. Среди показателей вариационной пульсометрии наибольшую факторную значимость имеют две группы показателей: а) САТ, ПСС, ИН, SDNN, pNN50, ИДМ, характеризующие различные аспекты напряженности сердечной деятельности; б) ИМА, ПСА, характеризующие соотношение ритмичности-аритмичности сердечной деятельности;

4. Значимость диапазонов LF и VLF для функциональной диагностики сомнительна, поскольку факторное соответствие их показателей неоднозначно, а сами спектры подвержены влиянию многочисленных и неконтролируемых искажений.

5. Вместо неустойчивых и неоднозначных спектральных показателей возможно использование ИДМ и ИМА, отражающих дыхательные и медленноволновые компоненты сердечной вариативности. Вместо оценок мощности в диапазонах предпочтительнее использование средних амплитуд спектра.

Оценка тренированности Одним из эффективных методов оценки тренированности и функциональной готовности (спортсменов и других профессионалов, работа которых сопряжена с повышенными физическими и психологическими нагрузками) является анализ динамики изменения ЧСС в процессе физической нагрузки большей интенсивности и в период постнагрузочного восстановления. Эта динамика напрямую отражает скоростные и действенные характеристики биохимических обменных процессов, протекающих в жидкостной среде организма. В стационарных условиях физическая нагрузка обычно дается в форме велоэргономометрических испытаний, в условиях же реальных соревнований возможно преимущественно исследование восстановительных процессов.

Биохимия мышечного энергообеспечения. Энергия, получаемая организмом от расщепления продуктов питания, хранится и транс-портируется к клеткам в виде высокоэнергетического соединения АТФ (адренозинтрифосфорная кислота). Эволюция сформировала три энергообеспечивающие функциональные системы:

  • 1. Анаэробно-алактатная система (АТФ - КФ или креатинфосфат) использует АТФ мышц на начальной фазе работы с последующим восстановлением запасов АТФ в мышцах путем расщепления КФ (1 моль КФ = 1 моль АТФ). Запасы АТФ и КФ обеспечивают только краткие энергетические потребности (3-15 с).
  • 2. Анаэробно-лактатная (гликолитическая) система осуществляет энергообеспечение путем расщепления глюкозы или гликогена, сопровождаемое образованием пировиноградной кислоты с последующим ее преобразованием в молочную кислоту, которая, быстро разлагаясь, образует калиевые и натриевые соли, имеющие общее название лактата. Глюкоза и гликоген (образуется в печени из глюкозы) трансформируются в глюкозо-6-фосфат, а затем - в АТФ (1 моль глюкозы = 2 моля АТФ, 1 моль гликогена = 3 моля АТФ).
  • 3. Аэробно-окислительная система использует кислород для окисления углеводов и жиров для обеспечения длительной мышечной работы с образованием АТФ в митохондриях.

В состоянии покоя энергия образуется расщеплением практически одинакового количества жиров и углеводов с образованием глюкозы. При кратковременной интенсивной нагрузке АТФ почти исключительно образуется за счет расщепления углеводов (самая «быстрая» энергия). Содержание углеводов в печени и скелетных мышцах обеспечивает образование не более 2000 ккал энергии, позволяющей пробежать около 32 км. Хотя жиров в организме значительно больше, чем углеводов, но жировой обмен (глюконеогенез) с образованием жирных кислот, а затем и АТФ неизмеримо более энергетически медленный.

Тип мышечных волокон определяет их окислительную способность. Так мышцы, состоящие из БС-волокон, более специфичны к выпол-нению физической нагрузки высокой интенсивности за счет использования энергии гликолитической системы организма. Мышцы же, состоящие из МС-волокон, содержат большее количество митохондрий и окислительных ферментов, что обеспечивает выполнение большего объема физической нагрузки с использованием аэробного обмена. Физическая нагрузка, направленная на развитие выносливости, способствует увеличению митохондрий и окислительных ферментов в МС-волокнах, но особенно - в БС-волокнах. При этом увеличивается нагрузка на систему транспорта кислорода к работающим мышцам.

Накапливающийся в жидкой среде организма лактат «подкисляет» мышечные волокна и тормозит дальнейшее расщепление гликогена, а также снижает способность мышц связывать кальций, что препятствует их сокращению. В интенсивных видах спорта аккумулирование лактата достигает 18-22 ммоль/кг при норме в 2,5-4 ммоль/кг. Предельными концентрациями лактата особенно отличаются такие виды спорта, как бокс и хоккей, а наблюдение их в клинической практике характерно для прединфарктых состояний.

Максимум выброса лактата в кровь происходит на 6-ой минуте после интенсивной нагрузки. Соответственно этому достигает максимума и ЧСС. Далее концентрация лактата в крови и ЧСС падает синхронно. Поэтому по динамике ЧСС можно судить о функциональных способностях организма по уменьшению концентрации лактата, а следовательно - и о эффективности энерговосстанавливащеего метаболизма.

Средства анализа. В нагрузочный и восстановительный период проводят ряд поминутных i=1,2,3. записей ЭКГ. По результатам строят скаттерграммы, которые совмещают на одном графике (рис. 6.30), по которому визуально оценивают динамику изменения показателей КИ. Для каждой i-й скаттерграммы вычисляют числовые показатели М, a, b, b/a. Для оценки и сравнения тренированности в динамике изменения каждого такого показателя Рi вычисляют поинтервальные оценки вида: (Рi-Pmax)/(Po-Pmax), где Po - значение показателя в состоянии релаксации; Pmax- значение показателя в максимуме физической нагрузки.

Рис. 6.30. Совмещенные скаттерграммы постнагрузочных 1-секундных интервалов восстановления и состояния релаксации

Литература 5. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: Медиком, 1997.

6. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: Медиком, 2000

7. Жирмунская Е.А. Клиническая электроэнцефалография. М.: 1991.

13. Макс Ж. Методика и техника обработки сигналов при техниче-ских измерениях. М.: Мир, 1983.

17. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, 1982. Т. 1, 2.

18. К. Прибрам. Языки мозга. М.: Прогресс, 1975.

20. Рандалл Р.Б. Частотный анализ. Брюль и Къер, 1989.

22. Русинов В.С., Гриндель О.М., Болдырева Г.Н., Вакер Е.М. Биопотенциалы головного мозга. Математический анализ. М.: Медицина, 1987.

23. А.Я. Каплан. Проблема сегментного описания электроэнцефалограммы человека//Физиология человека. 1999. Т.25. №1.

24. A.Ya. Kaplan, Al.A. Fingelkurts, An.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky. Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges//Signal processing. Special Issue: Neuronal Coordination in the Brain: A Signal Processing Perspective. 2005. №85.

25. А.Я. Каплан. Нестационарность ЭЭГ: методологический и экспериментальный анализ//Успехи физиологических наук. 1998. Т.29. №3.

26. Каплан А.Я., Борисов С.В.. Динамика сегментных характеристик альфа-активности ЭЭГ человека в покое и при когнитивных нагрузках//Журнал ВНД. 2003. №53.

27.Каплан А.Я., Борисов С.В., Желиговский В.А.. Классификация ЭЭГ подростков по спектральным и сегментным характеристикам в норме и при расстройстве шизофренического спектра//Журнал ВНД. 2005. Т.55. №4.

28. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А.. Структурная организация альфа-активности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Журнал ВНД. 2005. Т.55. №3.

29. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А. Анализ структурной синхронности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Физиология человека. 2005. Т.31. №3.

38. Кулаичев А.П. Некоторые методические проблемы частотного анализа ЭЭГ//Журнал ВНД. 1997. № 5.

43. Кулаичев А.П. Методология автоматизации психофизиологических экспериментов/сб. Моделирование и анализ данных. М.: РУСАВИА, 2004.

44. Кулаичев А.П. Компьютерная электрофизиология. Изд. 3-е. М.: Изд-во МГУ, 2002.

Вариабельность сердечного ритма

Вариабельность сердечного ритма (ВСР) (используется также аббревиатура – вариабельность ритма сердца – ВРС) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области Вариабельности сердечного ритма осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

Вариабельность – это изменчивость различных параметров, в том числе и ритма сердца, в ответ на воздействие каких-либо факторов, внешних или внутренних.

Построение кардиоинтервалограммы

Сердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

Методы ВСР не предназначены для диагностики клинических патологий, где хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного метода состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его применение особенно эффективно для оценки общих функциональных возможностей организма, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками.

Исходными материалом для анализа вариабельности сердечного ритма являются непродолжительные одноканальные записи ЭКГ (по стандарту Северо-американского общества стимуляции и электрофизиологии различают кратковременные записи – 5 минут, и длительные – 24 часа), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ. Метод основан на распознавании и измерении временных интервалов между R–зубцами ЭКГ (R-R-интервалы), построении динамических рядов кардиоинтервалов – кардиоинтервалограммы (Рис. 1) и последующего анализа полученных числовых рядов различными математическими методами.

Рис. 1. Принцип построения кардиоинтервалограммы (ритмограмма отмечена плавной линией на нижнем графике), где t - величина RR-интервала в миллисекундах, а n- номер (число) RR-интервала.

Методы анализа

Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

  • кардиоинтервалография;
  • вариационная пульсометрия;
  • спектральный анализ;
  • корреляционая ритмография.

Принцип метода: анализ ВСР является комплексным методом оценки состояния механизмов регуляции физиологических функций в организме человека, в частности, общей активности регуляторных механизмов, нейрогуморальной регуляции сердца, соотношения между симпатическим и парасимпатическим отделами вегетативной нервной системы.

Два контура регуляции

Можно выделить два контура регуляции: центральный и автономный с прямой и обратной связью.

Рабочими структурами автономного контура регуляции являются: синусовый узел, блуждающие нервы и их ядра в продолговатом мозгу.

Центральный контур регуляции сердечного ритма – это сложная многоуровневая система нейрогуморальной регуляции физиологических функций:

1-й уровень обеспечивает взаимодействие организма с внешней средой. К нему относится центральная нервная система, включая корковые механизмы регуляции. Она координирует деятельность всех систем организма в соответствии с воздействием факторов внешней среды.

2-й уровень осуществляет взаимодействие различных систем организма между собой. Основную роль играют высшие вегетативные центры (гипоталамо-гипофизарная система), обеспечивающие гормонально-вегетативный гомеостаз.

3-й уровень обеспечивает внутрисистемный гомеостаз в разных системах организма, в частности в кардиореспираторной системе. Здесь ведущую роль играют подкорковые нервные центры, в частности сосудодвигательный центр, оказывающий стимулирующее или угнетающее действие на сердце через волокна симпатических нервов.

Рис. 2. Механизмы регуляции сердечного ритма (на рисунке ПСНС - парасимпатическая нервная система).

Анализ ВСР используют для оценки вегетативной регуляции ритма сердца у практически здоровых людей с целью выявления их адаптационных возможностей и у больных с различной патологией сердечно-сосудистой системы и вегетативной нервной системы.

Математический анализ вариабельности сердечного ритма

Математический анализ вариабельности сердечного ритма включает применение статистических методов, методов вариационной пульсометрии и спектральный метод.

1. Статистические методы

По исходному динамическому ряду R-R интервалов вычисляются следующие статистические характеристики:

RRNN- математическое ожидание (М) - среднее значение продолжительности R-R интервала, обладает наименьшей изменчивостью среди всех показателей сердечного ритма, так как является одним из наиболее гомеостатируемых параметров организма; характеризует гуморальную регуляцию;

SDNN (мс) - среднее квадратическое отклонение (СКО), является одним из основных показателей вариабельности СР; характеризует вагусную регуляцию;

RMSSD (мс) - среднеквадратичное различие между длительностью соседних R-R интервалов, является мерой ВСР с малой продолжительностью циклов;

РNN50 (%) - доля соседних синусовых интервалов R-R, которые различаются более чем на 50 мс. Является отражением синусовой аритмии, связанной с дыханием;

CV - коэффициент вариации (КВ), КВ=СКО / М х 100, по физиологическому смыслу не отличается от среднего квадратического отклонения, но является показателем, нормированным по частоте пульса.

2. Метод вариационной пульсометрии

Мо - мода - диапазон наиболее часто встречающихся значений кардиоинтервалов. Обычно в качестве моды принимают начальное значение диапазона, в котором отмечается наибольшее число R-R-интервалов. Иногда принимается середина интервала. Мода указывает на наиболее вероятный уровень функционирования системы кровообращения (точнее, синусового узла) и при достаточно стационарных процессах совпадает с математическим ожиданием. В переходных процессах значение М-Мо может быть условной мерой нестационарности, а значение Мо указывает на доминирующий в этом процессе уровень функционирования;

АМо - амплитуда моды - число кардиоинтервалов, попавших в диапазон моды (в %). Величина амплитуды моды зависит от влияния симпатического отдела вегетативной нервной системы и отражает степень централизации управления сердечным ритмом;

DX - вариационный размах (ВР), DX=RRMAXx-RRMIN - максимальная амплитуда колебаний значений кардиоинтервалов, определяемая по разности между максимальной и минимальной продолжительностью кардиоцикла. Вариационный размах отражает суммарный эффект регуляции ритма вегетативной нервной системой в значительной мере связанный с состоянием парасимпатического отдела вегетативной нервной системы. Однако, в определенных условиях при значительной амплитуде медленных волн вариационной размах зависит в большей мере от состояния подкорковых нервных центров, чем от тонуса парасимпатической системы;

ВПР - вегетативный показатель ритма. ВПР = 1 /(Мо х ВР); позволяет судить о вегетативном балансе с точки зрения оценки активности автономного контура регуляции. Чем выше эта активность, т.е. чем меньше величина ВПР, тем в большей мере вегетативный баланс смещен в сторону преобладания парасимпатического отдела;

ИН - индекс напряжения регуляторных систем [Баевский Р.М., 1974]. ИН = АМо/(2ВР х Mo), отражает степень централизации управления сердечным ритмом. Чем меньше величина ИН, тем больше активность парасимпатического отдела и автономного контура. Чем больше величина ИН, тем выше активность симпатического отдела и степень централизации управления сердечным ритмом.

У здоровых взрослых людей средние показатели вариационной пульсометрии составляют: Мо - 0.80 ± 0.04 сек.; АМо - 43.0 ± 0.9%; ВР - 0.21 ± 0.01 сек. ИН у хорошо физически развитых лиц колеблется в пределах от 80 до 140 усл.ед.

3. Спектральный метод анализа ВСР

В анализе волновой структуры кардиоинтервалограммы и выделяют действие трех регуляторных систем: симпатического и парасимпатического отделов автономной нервной системы, и действие центральной нервной системы, которые влияют на вариабельность сердечного ритма.

Применение спектрального анализа позволяет количественно оценить различные частотные составляющие колебаний ритма сердца и наглядно графически представить соотношения разных компонентов сердечного ритма, отражающих активность определенных звеньев регуляторного механизма. Выделяют три главных спектральных компонента (см. рис. выше):

HF (s – волны) - дыхательные волны или быстрые волны (Т=2,5-6,6 сек., v=0,15-0,4 Гц.), отражают процессы дыхания и другие виды парасимпатической активности, на спектрограмме отмечены зеленым цветом;

LF (m – волны) - медленные волны I порядка (MBI) или средние волны (Т=10-30сек., v=0.04-0.15 Гц) связаны с симпатической активностью (в первую очередь вазомоторного центра), на спектрограмме отмечены красным цветом;

VLF (l – волны) - медленные волны II порядка (MBII) или медленные волны (Т>30сек., v<0.04Гц) - разного рода медленные гуморально-метаболические влияния, на спектрограмме отмечены синим цветом.

При спектральном анализе определяют суммарную мощность всех компонентов спектра (ТР), и абсолютную суммарную мощность для каждого из компонентов, при этом ТР определяется как сумма мощностей в диапазонах HF, LF и VLF.

Все вышеперечисленные параметры отражаются в отчете по кардиотестированию.

Как проводить математический анализ вариабельности сердечного ритма

Результаты лучше всего занести в таблицу и сопоставить с нормальными значениями. Затем проводят оценку полученных данных и делают вывод о состоянии вегетативной нервной системы, влиянии автономного и центрального контуров регуляции и адаптационных возможностях испытуемого.

Таблица «Вариабельность сердечного ритма».

Исследование проводилось в положении (лежа/сидя).

Длительность в мин.___________. Общее количество R-Rинтервалов___________. ЧСС:________

Норма и снижение вариабельности сердечного ритма

Постановку диагноза, связанного с проблемами в области сердца значительно упрощают новейшие методы исследования сосудистой системы человека. Несмотря на то, что сердце является независимым органом, на него достаточно серьезное влияние оказывает деятельность нервной системы, способная привести к перебоям в его работе.

Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

Что такое ВСР?

Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

Методы определения

Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

Анализ проводится на изучении последовательности интервалов:

  • R-R (электрокардиограмма сокращений);
  • N-N (промежутки между нормальными сокращениями).

Статистические методы. Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

Показатели данных промежутков включают:

  • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
  • RMSSD сравнение последовательности N-N интервалов;
  • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
  • CV оценка показателей величинной вариабельности.

Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

  • Mo (Мода) обозначает кардиоинтервалы;
  • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
  • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

Способы исследования ВСР

Международными медицинскими стандартами определено два способа исследования сердечного ритма:

  1. Регистрационная запись «RR» интервалов - на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
  2. Суточная запись «RR» промежутков - точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

ВСР здорового организма

Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

Если ВСР снижен

Резкое снижение вариации сердечного ритма указывает на определенные заболевания:

· Ишемическая и гипертоническая болезни;

· Прием некоторых препаратов;

Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

В лечебной практике анализ позволяет:

· Провести оценку висцеральной регуляции сердца;

· Определить общую работу организма;

· Оценить уровень стрессовой ситуации и физической активности;

· Контролировать эффективность проведения лекарственной терапии;

· Диагностировать заболевание на начальной стадии;

· Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

Related Posts:

Leave a Reply

Существует ли риск инсульта?

1. Повышенное(более 140) артериальное давление:

  • часто
  • иногда
  • редко

2. Атеросклероз сосудов

3. Курение и алкоголь:

  • часто
  • иногда
  • редко

4. Болезни сердца:

  • врожденный порок
  • клапанные нарушения
  • инфаркт

5. Прохождение диспансеризации и диангостики МРТ:

  • каждый год
  • раз в жизни
  • никогда

Итого: 0 %

Инсульт достаточно опасное заболевание, которому подвержены люди далеко не только старческого возраста, но и среднего и даже совсем молодого.

Инсульт – чрезвычайная опасная ситуация, когда требуется немедленная помощь. Зачастую он заканчивается инвалидностью, во многих случаях даже смертельным исходом. Помимо закупорки кровеносного сосуда при ишемическом типе, причиной приступа может стать и кровоизлияние в мозг на фоне повышенного давления, иначе говоря геморрагический инсульт.

Ряд факторов увеличивает вероятность наступления инсульта. Не всегда виновны, например, гены или возраст, хотя после 60 лет угроза значительно возрастает. Тем не менее, каждый может что-то предпринять для его предотвращения.

Повышенное артериальное давление является основным фактором угрозы развития инсульта. Коварная гипертония не проявляется симптомами на начальном этапе. Поэтому больные замечают ее поздно. Важно регулярно измерять кровяное давление и принимать лекарства при повышенных уровнях.

Никотин сужает кровеносные сосуды и повышает артериальное давление. Опасность инсульта у курильщика вдвое выше, чем у некурящего. Тем не менее, есть и хорошие новости: те, кто бросают курить, заметно снижают эту опасность.

3. При избыточной массе тела: худейте

Ожирение - важный фактор развития инфаркта мозга. Тучные люди должны задуматься о программе похудения: есть меньше и качественнее, добавить физической активности. Пожилым людям стоит обсудить с врачом, в какой степени им полезно снижение веса.

4. Держите уровни холестерина в норме

Повышенный уровень "плохого" холестерина ЛНП ведет к отложениям в сосудах бляшек и эмбол. Какими должны быть значения? Каждый должен выяснить в индивидуальном порядке с врачом. Поскольку пределы зависят, например, от наличия сопутствующих заболеваний. Кроме того, высокие значения «хорошего» холестерина ЛВП считаются положительными. Здоровый образ жизни, особенно сбалансированное питание и много физических упражнений, может положительно повлиять на уровень холестерина.

Полезной для сосудов является диета, которая обычно известна как «средиземноморская». То есть: много фруктов и овощей, орехи, оливковое масло вместо масла для жарки, меньше колбасы и мяса и много рыбы. Хорошие новости для гурманов: можно позволить себе один день отступить от правил. Важно в общем правильно питаться.

6. Умеренное потребление алкоголя

Чрезмерное употребление алкоголя увеличивает гибель пострадавших от инсульта клеток мозга, что не допустимо. Полностью воздерживаться необязательно. Стакан красного вина в день даже полезен.

Движение иногда лучшее, что можно сделать для своего здоровья, чтобы сбросить килограммы, нормализовать артериальное давление и поддержать эластичность сосудов. Идеальны для этого упражнения на выносливость, такие как плавание или быстрая ходьба. Продолжительность и интенсивность зависят от личной физической подготовки. Важное замечание: нетренированные старше 35 лет должны быть первоначально осмотрены врачом, прежде чем начать заниматься спортом.

8. Прислушивайтесь к ритму сердца

Ряд заболеваний сердца способствует вероятности инсульта. К ним относятся фибрилляция предсердий, врожденные пороки и другие нарушения ритма. Возможные ранние признаки проблем с сердцем нельзя игнорировать ни при каких обстоятельствах.

9. Контролируйте сахар в крови

Люди с диабетом в два раза чаще переносят инфаркт мозга, чем остальная часть населения. Причина заключается в том, что повышенные уровни глюкозы могут привести к повреждению кровеносных сосудов и способствуют отложению бляшек. Кроме того, у больных сахарным диабетом часто присутствуют другие факторы риска инсульта, такие как гипертония или слишком высокое наличие липидов в крови. Поэтому больные диабетом должны позаботиться о регулировании уровня сахара.

Иногда стресс не имеет ничего плохого, может даже мотивировать. Однако, продолжительный стресс может повысить кровяное давление и восприимчивость к болезням. Он косвенно может стать причиной развития инсульта. Панацеи от хронического стресса не существует. Подумайте, что лучше для вашей психики: спорт, интересное хобби или, возможно, упражнения на расслабление.

Catad_tema Нарушения сердечного ритма и проводимости - статьи

Влияние некоторых лекарственных препаратов различных фармакологических групп на вариабельность ритма сердца

В работе приведены систематизированные данные о влиянии ряда препаратов на вариабельность ритма сердца (ВРС). b-блокаторы у больных ИБС приводят к значительному увеличению ВРС за счет увеличения ее компонентов, обусловленных влиянием парасимпатической нервной системы, предупреждают усиление симпатических влияний в ранние утренние часы, что улучшает течение заболевания и прогноз. Ингибиторы ангиотeнзин-превращающего фермента (эналаприл, каптоприл и др.) улучшают параметры ВРС, а следовательно улучшают прогноз по отношению к риску внезапной смерти и жизнеугрожающих аритмий у больных с заболеваниями сердечно-сосудистой системы. Антагонисты кальция снижают низкочастотные составляющие спектра у больных острым инфарктом миокарда (улучшая при этом прогноз течения заболевания). b-адреномиметики снижают общую вариабельность ритма сердца, за счет повышения симпатического влияния при значимом улучшении функции внешнего дыхания. Так как при ИБС желательно улучшать ВРС с целью улучшения прогноза заболевания, то исходя из влияния на ВРС, больным ИБС можно рекомендовать применение b-блокаторов, ингибиторов АПФ, антагонистов кальция.

Суточное мониторирование ЭКГ широко используется в клинике для различных диагностических, прогностичтеских и лечебных целей. В настоящее время, наряду с анализом нарушений ритма сердца и проводимости, появилась возможность количественной оценки длительности и расположения сегментов, в частности смещения сегмента ST, что используется для диагностики ИБС. В последнее время суточное мониторирование ЭКГ используется и для оценки функции электрокардиостимулятора и циклической изменяемости ритма сердца, определяемой на основании различных вычисляемых параметров оцифрованной записи ЭКГ. Возможность компьютерной обработки суточного сердечного ритма, зарегистрированного в условиях свободной активности, создает уникальную возможность как для учета биоритмологических влияний, так и для оценки экстракардиальной регуляции ритма сердца. Изменение ритма сердца - универсальная оперативная реакция целостного организма в ответ на любое воздействие внешней среды. В ее основе лежит обеспечение баланса между симпатической и парасимпатической нервной системами . Именно наэтом основываются многочисленные методы анализа вариабельности ритма сердца. Сердечный ритм является индикатором отклонений, возникающих в регулирующих системах, предшествующих гемодинамическим, метаболическим нарушениям. Поэтому изменение сердечного ритма является наиболее ранним прогностическим признаком многих заболеваний сердечно-сосудистой, нервной, дыхательной, эндокринной систем и т.д. . Еще одно направление анализа вариабельности сердечного ритма в клинической практике - это подбор оптимальных доз препаратов с учетом фона вегетативной регуляции организма и контроль за проводимой терапией . При нормальном состоянии сердечно-сосудистой системы промежуток времени между двумя соседними сердечными сокращениями меняется от сокращения к сокращению. Эту изменчивость принято называть вариабельностью ритма сердца (ВРС) .

Принципы анализа ВРС

Современные методы анализа ВРС можно разбить надве основные группы: к первой группе относятся так называемые методы анализа во временной области, ко второй группе - методы анализа в частотной области.

I. Среди методов анализа во временной области выделяют два основных направления: статистические методы, основанные на оценивании различных статистических характеристик интервалов RR, и геометрические методы, заключающиеся в оценке формы и параметров гистограммы распределения интервалов RR за исследуемый промежуток времени .

1) При статистическом анализе ВРС оцениваются два типа величин: длительность интервалов RR и разность длительностей соседних интервалов RR:
а) при оценке длительности интервалов RR используются следующие характеристики: SDNN - стандартное отклонение величин интервалов RR за весь рассматриваемый период; SDANN - стандартное отклонение величин усредненных интервалов RR, полученных за все 5-минутные участки, на которые поделен период регистрации (24 ч); SDNNindex - среднее значение стандартных отклонений по всем 5-минутным участкам, на которые поделен период наблюдения (24 ч);
б) при оценке разностей длительностей соседних интервалов RR применяются следующие показатели: PNN (%) - процент NN50 от общего количества последовательных пар интервалов RR; RMSSD - квадратный корень из суммы квадратов разности величин последовательных пар интервалов RR, полученных за весь период записи;

2) Геометрический метод анализа ВРС включает построение и анализ гистограмм интервалов RR.

II. Методы второй группы - спектральные - применяются для выявления характерных периодов в динамике изменения длительности интервалов RR или. что тоже самое, периодов в динамике ЧСС. Помимо этого, при спектральном анализе оценивается вклад тех или иных периодических составляющих в динамические изменения ЧСС. При спектральном анализе принято определять следующие параметры :

1) высокочастотные колебания (HF): 0,15-0,40 Гц. Спектральная мощность отражает влияние парасимпатического отдела вегетативной нервной системы на сердечный ритм;

2) низкочастотные колебания (LF): 0,04-0,15 Гц. Спектральная мощность в этом диапазоне преимуще ственно отражает влияние симпатического отдела вегетативной нервной системы на сердечный ритм;

3) очень низкочастотные колебания (VLF): 0,003-0.04 Гц. Спектральная мощноcть в этом диапазоне отражает гуморальные влияния на сердечный ритм;

4) общая мощность спектра (Total): 0,003-0,40 Гц. Отражает суммарную активность вегетативного воздействия на сердечный ритм;

5) мощность в диапазоне высоких частот, выраженная в нормализованных единицах:

HFnu = HF / (Total - VLF) * 100

6) мощность в диапазоне низких частот, выраженная в нормализованных единицах:

LFnu = LF / (Total - VLF) * 100

7) LFnu/HFnu - это соотношение характеризует баланс симпатических и парасимпатических влияний (табл. 1).

Таблица 1. Должные величины показателей спектрального анализа ВРС .

Клиническое значение анализа ВРС. Исследование ВРС при сердечно-сосудистой патологии

На основании анализа соотношения быстрых и медленных ритмов экспериментально доказано, что при наличии опасных для жизни аритмий увеличивается симпатическая активность и снижается парасимпатическая активность . В популяционном исследовании Североамериканской многоцентровой группы по изучению больных после инфаркта миокарда было показано, что низкий показатель стандартного отклонения интервалов RR за сутки (SDNN<50 мс) тесно коррелирует с риском внезапной смерти, причем даже более выражение, чем показатели фракции выброса левого желудочка, количество желудочковых аритмий при холтеровском мониторировании и толерантность к физической нагрузке . Показаны изменения активности вегетативной нервной системы при острой и хронической сердечной недостаточности: N.S. Noda et аl. установили, что уменьшение ВРС - независимый предиктор смерти при хронической сердечной недостаточности . В своем исследовании мы показали снижение параметров ВРС (SDNN, SDANNind) при утяжелении течения ишемической болезни сердца . Интенсивно изучается связь вегетативной дисфункции и артериальной гипертонии: D.P. Liao и соавт. нашли, что уменьшение парасимпатической активности (уменьшение HF-спектра, снижение SDNN) сопряжено с риском развития гипертензии .

Использование анализа ВРС у больных диабетической нейропатией

Вегетативная нейропатия, являющаяся осложнением сахарного диабета, характеризуется ранней и диссеминированной нейрональной дегенерацией малых нервных волокон как симпатического, так и парасимпатического трактов, с момента появления ее клинических проявлений ожидаемая смертность составляет 50%, при этом резко снижается показатель pNN50 .

Использование анализа ВРС при легочной патологии

В работе А.В. Соколова изучался системный подход к диагностике синдрома дыхательной недостаточности и степени его выраженности у больных хроническим бронхитом . Автор показал, что основными проявлениями синдрома дыхательной недостаточности у больных хроническим бронхитом являются не только симтомокомплекс одышки, но и снижение резервных возможностей организма. Р.Х. Зулкарнеев показал снижение общей ВРС, а также ее высокочастотных и низкочастотных составляющих по мере нарастания тяжести течения бронхиальной астмы, что свидетельствует об общем снижении вегетативного влияния на сердечный ритм . В работах Watson J.P. и Nola А. было показано снижение SDNN и pNN50 при увеличении артериальной гипоксемии у больных хроническим обструктивным бронхитом .

Влияние фармакологических препаратов на ВРС

Исходя из представлений о клинической значимости ВРС, во многих работах изучались изменения параметров ВРС под влиянием различных лекарственных веществ для того, чтобы оценить возможность их применения с целью коррекции состояния вегетативной регуляции ритма сердца и улучшения прогноза течения заболевания, а также для улучшения качества жиз ни больных. До настоящего времени не удалось полу чить препараты, избирательно регулирующие ВРС и не затрагивающие другие функции организма, одна ко было подтверждено, что многие известные препараты, нашедшие широкое применение в клинике, оказывают влияние на ВРС, что можно рассматривать и качестве их побочного эффекта. В ряде случаев он положительный (увеличение ВРС), в ряде - отрицательный (снижение ВРС).

b-адреномиметики

В работах Jariti и соавт. (1997. 1998) рассмотрено снижение ВРС при воздействии сальбутамола . Jartti et al. описали результаты рандомизированного двойного слепого плацебо-кон тролируемого исследования больных бронхиальноп астмой. Исследовались функция внешнего дыхания и систолическое артериальное давление, проводился спектральный анализ ВРС в течение 20 мин до и через 2 ч после ингаляции сальбутамола (50 мкг в день за два приема). Исследование показало снижение общеи ВРС за счет повышения симпатического влияния при значимом улучшении функции внешнего дыхания . Однако в работе М.Р. Якушиной (1995) доказано, что у больных хроническим обструктивным бронхитом с умеренно и значительно выраженной бронхиальной обструкцией курс приема сальбутамола (6 мг 2 раза в день в течение 10 дней) приводил к уменьшению симпатических влияний на регуляцию ритма сердца . Таким образом, назначение препаратов данной группы больным хроническими обструктивными заболеваниями с сопутствующей сердечной патологией должно проводиться с осторожностью и желательно под контролем анализа ВРС при суточном мониторировании ЭКГ.

М-холинолитики

В работе А.Б. Шабуниной, (2000) было показано, что монотерапия ипратропиума бромидом в суточной дозе 120-180 мкг в течение 12 нед при хроническом обструктивном бронхите приводит к оптимизации вегетативной регуляции ритма сердца, уменьшая выраженность симпатикотонии у таких больных Ввиду вышесказанного возможно применение ипратропиума бромида при хроническом обструктивном бронхите при сопутствующей сердечной патологии.

Ингибиторы ангиотензин-превращающего фермента

В многих отечественных и зарубежных работах было показано улучшение параметров ВРС, а следовательно улучшение прогноза по отношению к риску внезапной смерти и жизнеугрожающих аритмий у больных с заболеваниями сердечно-сосудистой системы при применении различных ингибиторов ангиотензин-превращающего фермента. I.Derad (1996) доказал повышение парасимпатического тонуса и уменьшение симпатического тонуса вегетативной нервной системы при применении ингибитора ангиотензин-превращающего фермента эналаприла: кроме того, авторами было показано, что у больных ИБС при применении эналаприла (10 мг) и фозиноприла (20 мг) через 6 ч после перрорального приема наступает достоверное увеличение парасимпатической активности, снижение концентрации катехоламинов и кортизола в плазме крови . В исследовании Jansson К. и соавт. (1999) доказано, что каптоприл (по 25 мг 2 раза в сутки в течение 6 мес.) увеличивает ВРС у больных идиопатической дилатационной кардиомиопатией, причем данный эффект сохраняется в течение по крайней мере 1 месяца . В работе Завадкина А.В. и Степановой Н.С. (2000) исследовалось влияние эналаприла(5 мг в сутки в течение 12 нед.) на желудочковую эктопическую активность и на ВРС у больных с сердечной недостаточностью. После 12 нед. терапии улучшились показатели суточной ВРС и достоверно уменьшилось количество значимых и жизнeугрожаемых желудочковых экстрасистол . Таким образом, ингибиторы ангиотензин-превращающего фермента улучшают параметры ВРС, а, следовательно, прогноз в отношении риска внезапной смерти и жизнеугрожающих аритмий у больных с патологией сердечно-сосудистой системы.

b-блокаторы изменяют спектр сердечного ритма в сторону увеличения высокочастотной составляющей спектра; вклад среднечастотной и низкочастотной составляющих, напротив, уменьшается, что говорит о нормализации вегетативной регуляции ритма сердца. b-блокаторы у больных ИБС приводят к значительному увеличению ВРС за счет увеличения влияния парасимпатической нервной системы, предупреждают усиление симпатических влияний в ранние утренние часы. A. Kardos и соавт. (1998) у 50 пациентов после инфаркта миокарда 5-недельной давности исследовали действие липофильных (метопролол) и гидрофильных (атенолол) b-блокаторов на вегетативный баланс. Атенолол в дозе 50 мг/сут и метопролол в дозе 100 мг/сут применяли в течение 4 нед. В исследовании как в покое, так и при нагрузке (психологический стресс, ортостатическая проба), выявлено, что частота сердечных сокращений и соотношение симпатической и парасимпатических нервных систем были ниже в группе получавших атенолол , что свидетельствует о менее выраженном влиянии атенолола на вегетативную нервную систему, чем метопролола. В. Wennerblom и соавт. (1998) показали, что метопролол в дозе 100 мг/сут., уменьшая тонус симпатической нервной системы, улучшал прогноз течения заболевания у больных ИБС стенокардией напряжения функциональный класс II-III . И.С. Явелов и соавт (1999) показали, что у больных с нестабильной стенокардией через 1 нед регулярного приема метопролола и атенолола (в средней суточной дозе 282 и 148 мг/сут соответственно) происходят нормализация ВРС и относительное увеличение вагусной активности, причем увеличение ВРС наблюдается только у больных со средней частотой сердечных сокращений в покое более 67 уд/мин . В исследовании A. Mortara et аl. (2000) отмечено увеличение показателей временного анализа ВРС у больных с хронической сердечной недостаточностью при длительном воздействии несслективного b-блокатора карведилола в дозе 12,5 мг 2 раза в сутки . И.В. Демидова и соавт. (2000) показали высокую активность нового кардиоселективного b-блокатора бисопролола в дозе 5 мг 1 раз в сутки в течение 16 нед у больных с постинфарктной сердечной недостаточностью (функциональный класс III и IV), который значимо увеличивал параметры ВРС через 16 нед. терапии .

Тaблица 2. Возрастные нормы параметров статистического анализа ВРС*

Возраст, лет SDNN, мс SDDANN, мс RMSSD, мс
20-29 109-187 94-180 24-62
30-39 111-175 97-163 24-46
40-49 102-162 75-156 20-42
50-59 94-148 79-133 16-34
60-69 89-153 80-142 16-28
70-79 102-146 94-134 17-31
80-99 83-129 71-119 1-7

Антиаритмические препараты

Информация о влиянии на ВРС пропафенона противоречива: он по данным В.М. Михайлова , подобно b-блокаторам, усиливает парасимпатическую активность, тем самым улучшая показатели ВРС, однако его влияние меньше выражено, чем метопролола и других b-блокаторов. Отмечено, что пропафенон уменьшает временные характеристики ВРС у пациентов с хроническими желудочковыми аритмиями . Кроме того, пропафенон снижает ВРС, уменьшая соотношение низкочастотных и высокочастотных характеристик ВРС . П.В.Дмитрюк (1997) показал, что независимо от состояния вегетативной нервной системы, препарат повышает тонус симпатического отдела и одновременно снижает вагуснос влияние на сердце . Таким образом, пропафенон и его аналоги, возможно, имеют разнонаправленное влияние на ВРС, при этом, по-видимому, применение этих препаратов нежелательно у больных, перенесших инфаркт миокарда, вследствие ухудшения прогноза течения заболевания.

Другой антиаритмический препарат - амиодарон - не оказывает значимого влияния на ВРС . Поэтому при необходимости назначать антиаритмические препараты больным ИБС предпочтение следует давать амиодарону, а не пропафенону. Исходя из данных о влиянии на ВРС, амиодарон улучшает прогноз течения заболевания у больных ИБС.

Антагонисты кальция

Дилтиазем снижает низкочастотные составляющие спектра у больных острым инфарктом миокарда (улучшая при этом прогноз течения заболевания) в той же степени, что и b-блокаторы . В работе О.А. Голощапова и соавт. (2000) было показано, что нифедипин у большинства больных артериальной гипертонией незначительно снижает ВРС . Таким образом, целесообразно применение антагонистов кальция (дилтиазем и его аналоги; нифедипин следует применять с осторожностью, предпочтительно ретардные формы).

Эстрогены

По данным G. Rosano (1993) у здоровых женщин, находящихся в периоде постменопаузы на заместительной гормональной терапии 17b-эстрадиолом в дозе 1 мг/сут на протяжении 4 мес, достоверно повышались показатели ВРС, что свидетельствует о нормализации функции вегетативной нервной системы в отношении контроля над сердечно-сосудистой системой .

Заключение

Исходя изданных о влиянии ряда фармакологических препаратов на ВРС, представляется целесообразным применение некоторых препаратов для увеличения ВРС в целях улучшения прогноза течения сердечно-сосудистых заболеваний с целью коррекции вегетативной регуляции сердечного ритма. В первую очередь, это касается b-блокаторов и ингибиторов ангиотензин-превращающего фермента, в частности эналаприла, каптоприла и др.

Abstract

24-hour ECG-monitoring is used for diagnostic, prognostic and remedial purpose. Together with the analysis of impairment of cardiac rhythm and conduction there is the quantitative assessment of localization and duration of ST-segment. It is used for diagnostic of chronic coronary disease. The 24-hour ECG-monitoring is also used for the value of electrocardiostimulator function and cyclic cardiac rhythm variability. The influence of different drugs on cyclic cardiac rhythm variability is described in this article.

Литература:

1. Михайлов В.М. Вариабельность ритма сердца. Опыт практического применения. - Иванове: Изд-во Ивановской госуд. мед. академии, 2000. - 200 с.
2. Derad 1., Otterbein A., Molle M.„ Petrowsky R., Born J., Fehm H.L. The angiotensin converting enzyme inhibitors fosinopril and enalapdl differ in their central nervous effects in humans. - J. Hypertens., 1996. V. 14. N. 11. P. 1309-1315.
3. Рябыкина Г.В., Соловьев А.В. Вариабельность ритма сердца. - М.: Изд-во "СтарКo", 1998. - 200 с.
4. Явелов И.С., Зуйков Ю.А., Деев А.Д., Травина Е.Е., Грацианский Н.А., Аверков О.В., Ваулин Н.А. Опыт изучения вариабельности ритма сердца при острых коронарных синдромах. - Росс. Кардиол. Журн., 1999. № 1. С. 3-10.
5. Баевский P.M., Кириллов О.И., Клецкин С.3. Математический анализ изменений сердечного ритма при стрессе. - М.: Наука, 1984. - 221 с.
6. Вариабельность сердечного ритма. Стандарты измерения, физиологической интерпретации и клинического использования. Рабочая группа Европейского Кардиологического Общества и Северо-Американского общества стимуляции и электрофизиологии. - Вестник аритмологии, 1999. № 11. С. 53-78.
7. van Ravenswaaij-Arts C.A., Kolle L.A., Hopman J.C., Stoelinga G.B. Heart rate variability. - Ann. of intern. Med., 1993. V. 118. P. 436-447.
8. Дабровски А., Дабровски Б., Пиотрович Р. Суточное мониторирование ЭКГ. - М: Медпрактика, 1999.- 208 с.
9. Akselrod S., Gordon D., Ubel F.A. et.al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. - Science, 1981. V. 213. N. 4504. P. 220-222.
10. van Ravenswaaij-Arts C.A., Kolle L.A., Hopman J.C., Stoelinga G.B. Heart rate variability. - Ann. of intern. Med., 1993. V. 118. P. 436-447.
11. Noda A., Yasuma F., Okada Т., Yokota М. Circadian rhythm ofautonomic activity in patients with obstructive sleep apnea syndrome. - Clin. Cardiol., 1998. V. 21. N. 4. P. 271-276.
12. Стручков П.В, Зубкова А.В., Короткова Е.С., Гуревич М.В. Зависимость параметров вариабельности ритма сердца при суточном мониторировании ЭКГ от возраста больных разными формами ИБС. - Вестник аритмологии, 2000. № 17. С. 66.
13. Кирячков Ю.Ю., Хмелевский Я.М., Воронцова Е.В. Компьютерный анализ вариабельности сердечного ритма: методики, интерпретация, клиническое применение. - Анестезиология и реаниматология, 2000. № 2. С. 56-62.
14. Bemardi L., Ricordi L., Lazzati P. Impaied circulation modulation of sympathovagal activity in diabetes. - Circulation, 1989. V. 79. P. 1443-1452.
15. Соколов А.В. Системный анализ синдрома дыхательной недостаточности у больных хроническим бронхитом. - автореферат диссертации... д.м.н. - Рязань, 2000. 39 с.
16. Зулкарнеев Р.Х. Диагностическое значение оценки вариабельности кардиореспираторного паттерна у больных бронхиальной астмой. - автореферат диссертации... к.м.н. Уфа, 1997. 24 с.
17. Watson J.P, Nolan J., Elliott M.W. Autonomic disfunction in patients with nocturnal hypoventilation in extrapulmonary restrictive disease. - Eur. Respir. J., 1999. V. 13. N. 5. P. 1097-1102.
18. Jartti ТТ., Kaila T.J., Tahvanainen K.U., Kuulela ТА., Vanto T.T, Valimaki I.A. Altered cardiovascular autonomic regulation after salbutamol treatment in astmatic children. - Clin. PhysioL, 1998. V. 18. N. 7. P. 345-353.
19. Jartii Т., Tahvanainen К., Vanto T The acute effects of inhaled salbutamolon the beat-to-beat variability of heart rate and blood pressure assessed by spectral analysis. - Br. J. Clin. Pharmacol., 1997. V. 43. N. 4. P. 421-428.
20. Якушина М.Р. Клинико-инструментальная характеристика кардиореспираторной системы и вегетативного гомеостаза у больных хроническим обструктивным бронхитом.-автореферат диссертации...к.м.н.- Рязань, 1995. 24 с.
21. Шабунина А.Б. Вегетативная регуляция при хроническом обструктивном бронхите и ее динамика в процессе лечения больных ипратропиума бромидом. - автореферат диссертации... к.м.н. - Пермь, 2000. 20 с.
22. Jansson К., Hagerman I., Ostund R., Kariberg K.E., Nylander E., Nyquist 0., Dahlstrom U. The effects ofmetoprolol and captopril on heart rate variability iri patients with idiopatic dilated cardiomyopathy. - Clin. Cardiol., 1999. V.22. N. 6. P. 397-402.
23. Завадкин A.B., Степанова Н.С. Динамика желудочковой эктопической активности, ишемических проявлений и показателей вариабельности ритма сердца у больных сердечной недостаточностью при лечении эднитом. - Тезисы VII Российского национального конгресса "Человек и лекарство", 2000. С. 38.
24. Wennerblom В., Courmel Ph., Hermida J.S. et al. Heart rate variability in myocardial hypertrophy and heart failure, and effects of beta-blocking therapy. - Eur. Heart J., 1991. V. 12. P. 412-422.
25. Явелов И.С., Зуйков Ю.А., Деев А.Д., Травина Е.Е., Грацианский Н.А., Аверков О.В., Ваулин Н.А. Опыт изучения вариабельности ритма сердца при острых коронарных синдромах. - Росс. Кардиол. Журн., 1999. №1. С. 3-10.
26. Mortara A., La Rovere M.T, Pinna G.D., Maestri R., Capomolla S., Cobelli F. Nonselective beta-adrenergic blocking agent, carvedilol, improws arterial baroreflex gain and heart rate variability in patients witn stable chronic heart failure. - Am. Heart J., 2000. V. 139. N. 6. P. 1088-1095.
27. Демидова И.В., Терещенко С.Н., Моисеев B.C. Влияние бисопролола на вариабельность сердечного ритма у больных хронической сердечной недостаточностью III-IV функционального класса по NYHA. - Тезисы VII Российского национального конгресса "Человек и лекарство", 2000. С. 34.
28. Дмитрюк П.В. и др. Влияние пропафенона на динамику ритмографических показателей и качество жизни у больных с экстрасистолической аритмией. - Кардиология, 1997. Т. 37. № 3. С. 47-50.
29. Иванов Г. Г. Вариабельность сердечного ритма. - В сборнике "Современная электрокардиография: новые возможности и области применения в клинике". - М., 2000. С. 24-27.
30. Голошапов О.В. и соавт. Разнонаправленное влияние нифедипинаЬ-блокатора проппранололоа на вариабельность ритма сердца у больных артериальной гипертонией. - Тезисы VII Российского национального конгресса "Человек и лекарство", 2000. С. 32.
31. Rosano G.M., Collins P., Jiang C. et al. Cardiovascular protection by estrogen - a calcium antagonist effect?- Lancet, 1993. V. 341. Р, 1264-1265.

28.07.2016

Постановку диагноза, связанного с проблемами в области сердца значительно упрощают новейшие методы исследования сосудистой системы человека. Несмотря на то, что сердце является независимым органом, на него достаточно серьезное влияние оказывает деятельность нервной системы, способная привести к перебоям в его работе.

Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

Что такое ВСР?

Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

Методы определения

Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

Анализ проводится на изучении последовательности интервалов:

  • R-R (электрокардиограмма сокращений);
  • N-N (промежутки между нормальными сокращениями).

Статистические методы . Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

Показатели данных промежутков включают:

  • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
  • RMSSD сравнение последовательности N-N интервалов;
  • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
  • CV оценка показателей величинной вариабельности.

Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

  • Mo (Мода) обозначает кардиоинтервалы;
  • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
  • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

Способы исследования ВСР

Международными медицинскими стандартами определено два способа исследования сердечного ритма:

  1. Регистрационная запись «RR» интервалов — на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
  2. Суточная запись «RR» промежутков — точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

ВСР здорового организма

Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

Если ВСР снижен

Резкое снижение вариации сердечного ритма указывает на определенные заболевания:
· Ишемическая и гипертоническая болезни;
. Инфаркт миокарда;
· Рассеянный склероз;
· Сахарный диабет;
· Болезнь Паркинсона;
· Прием некоторых препаратов;
· Нервные нарушения.

Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

В лечебной практике анализ позволяет:
· Провести оценку висцеральной регуляции сердца;
· Определить общую работу организма;
· Оценить уровень стрессовой ситуации и физической активности;
· Контролировать эффективность проведения лекарственной терапии;
· Диагностировать заболевание на начальной стадии;
· Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

Норма и снижение вариабельности сердечного ритма обновлено: Июль 30, 2016 автором: vitenega