Цвет и зрение человека. Физиология цветоощущения Отвечает за восприятие световых сигналов




Как возникают изображения предметов на сетчатке? Лучи, отраженные от предметов, на которые направлено наш глаз, проходят через роговицу, жидкость, содержащаяся между ней и радужной оболочкой, хрусталик и стекловидное тело.

В каждом из этих сред они изменяют свое направление, т.е. преломляются. Основное значение для преломления света в глазу имеет хрусталик. У людей с нормальным зрением лучи, преломились в хрусталике, попадают на сетчатку и образуют на ней четкое изображение предметов. На рисунке 6 показано, как лучи от нижней точки предмета В, преломляясь, собираются на поверхности сетчатки в точке В1 лучи от верхней точки А собираются ниже в точке А1. Итак, изображение на сетчатке будет действительным, уменьшенным и перевернутым. В зрительных нервных центрах коры большого мозга формируется изображение таким, каким оно есть на самом деле.

Что такое аккомодация? Для четкого восприятия предметов необходимо, чтобы их изображение всегда попадал на сетчатку. Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся нечеткими. Если рассматривать близкие предметы, то нечетко видно отдаленные. Люди могут четко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну. Способность глаза приспосабливаться к четкому видению предметов, находящихся на разном расстоянии, называют аккомодацией (от лат. АКОМ дате - приспособление к чему-либо) (рис. 7).

Наименьшее расстояние от глаза, с которой изображение еще воспринимается четко, для детей и подростков в норме составляет 7-10 см. С возрастом хрусталик теряет свою эластичность и аккомодационная способность глаза уменьшается.

Вспомните из курса физики, что такое свет.

Как мы воспринимаем свет? Лучи света попадают на сетчатку, состоящую из нескольких слоев клеток различных по форме и функциям (рис. 9, 10). Внешний слой клеток содержит черный пигмент, который поглощает световые лучи. В следующем слое имеются светочувствительные клетки - фоторецепторы: колбочки и палочки. Фоторецепторы соединяются с нервными клетками, образующими третий слой. Четвертый слой сетчатки состоит из крупных нервных клеток. их отростки образуют зрительный нерв, которым возбуждение передается в зрительной зоны коры большого мозга. Место, где зрительный нерв выходит из сетчатки, лишенное фоторецепторов, не воспринимает света и называется слепым пятном (рис. 8). Ее площадь (в норме) составляет от 2,5 до 6 мм2. Предметы, изображения которых попадает на участок, мы не видим.

В сетчатке человека насчитывают около 130 млн палочек и 7 млн. колбочек. Палочки расположены на периферии сетчатки. Они очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Колбочки возбуждаются при ярком свете и малочувствительны к слабому освещению.

В центре сетчатки содержатся преимущественно колбочки. Это место называют желтым пятном (рис. 8). Желтое пятно, особенно его центральная ямка, считается местом наилучшего видения. В норме изображение всегда фокусируется на желтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже. Например, задержите взгляд на любом слове в середине строки, который вы читаете. Это слово будет хорошо видно, а слова, расположенные в начале и в конце строки, различаются значительно хуже.

В процессе преобразования энергии света в нервный импульс важную роль играет витамин А. Его недостаток вызывает значительное ухудшение сумеречного зрения, то есть так называемую куриную слепоту.

При возбуждении палочек возникает ощущение белого света (бесцветное ощущения), поскольку они воспринимают широкий спектр световых лучей.

Наш глаз способен воспринимать электромагнитные колебания с длиной волны от 320 до 760 нм (нм - нанометр - одна миллиардная доля метра). Лучи, длина волны которых короче 320 нм, называют ультрафиолетовыми, а с длиной волны больше 760 нм - инфракрасными.

Как мы воспринимаем цвет? Ли цвета мы воспринимаем? Мир разноцветный, и мы можем видеть его таким. Цвета мы воспринимаем с помощью колбочек, которые реагируют только на определенную длину волны.

Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, другой - на зеленый и третьего - синий. Эти три цвета называют основными. Оптическим смешиванием основных цветов можно получить все цвета спектра и их оттенки. Если колбочки всех типов возбуждаются одновременно и одинаково, возникает ощущение белого цвета (рис. 11).

У некоторых людей цветовое зрение нарушено. Расстройство цветового зрения, или частичную цветовую слепоту, называют дальтонизмом. Название происходит от фамилии английского ученого Дж. Дальтона, который 1794 впервые описал это явление. Различают врожденный и приобретенный дальтонизм. Прирожденным (наследственным), собственно дальтонизмом, бывает, как правило, расстройство восприятия красного и зеленого цветов. Слепота на синий цвет является частью приобретенной. Расстройства цветового зрения объясняют отсутствием определенных колбочек в сетчатке глаза. Случается также частичный дальтонизм (неспособность воспринимать один из основных цветов). Дальтонизм наблюдается в 0,5% женщин и 5% мужчин. Люди, страдающие расстройствами цветового зрения, не могут работать на транспорте, в авиации и т.п.. Дальтонизм не лечится.

Как цвет влияет на эмоциональную сферу человека, его работоспособность? Известно, что один цвет успокаивает, другой раздражает. На этом основывается методика определения настроения человека. Еще немецкий поэт И. Гете писал о способности цвета создавать настроение: желтый - веселит и бодрит, зеленый - вмиротворюе, синий - вызывает грусть. Психологи доказали, что красный цвет приводит к цветовой усталости, а зеленый помогает ее снять. Цвет влияет на производительность труда человека. Гигиенисты установили, что зеленый и желтый цвета обостряют зрение, ускоряют зрительное восприятие, создают устойчивое ясное видение, снижают внутренне глазное давление, обостряют слух, способствуют нормальному кровообращению, т.е. в целом повышают работоспособность человека. Красный цвет действует противоположно. Эти данные используют дизайнеры при оформлении рабочих мест.

Цвет существует, только если представлены три его компонента: зритель, предмет и освещение. Несмотря на то, что чисто белый свет воспринимается как бесцветный, в действительности он содержит все цвета видимого спектра. Когда белый свет достигает объекта, поверхность избирательно поглощает одни цвета и отражает другие; только отражённые цвета создают у зрителя восприятие цвета.

Человеческое цветовосприятие: глаза и зрение

Человеческий глаз воспринимает этот спектр, используя для зрения комбинацию из клеток-палочек и клеток-колбочек. Палочки имеют более высокую светочувствительность, но различают только интенсивность света, тогда как колбочки могут также различать цвета, но лучше всего функционируют при ярком свете. В каждом нашем глазе есть три типа колбочек, каждый из которых более чувствителен к коротким (К), средним (С) или длинным (Д) световым волнам. Комбинация сигналов, возможных во всех трёх колбочках, описывает диапазон цвета, который мы можем видеть своими глазами. Нижеприведенный пример иллюстрирует относительную чувствительность каждого типа колбочек ко всему видимому спектру приблизительно от 400 до 700 нм.

Заметьте, что каждый из типов клеток воспринимает не единственный цвет, а имеет различную степень чувствительности в широком диапазоне длин волн. Наведите курсор на «Освещённость», чтобы увидеть, какие цвета вносят наибольший вклад в наше восприятие яркости. Заметьте также, что человеческое восприятие цвета максимально чувствительно к свету в жёлто-зелёном диапазоне спектра; этот факт используется матрицей Байера в современных цифровых камерах.

Аддитивный и субтрактивный синтез цвета

Практически все различимые нами цвета могут быть составлены из некоторого сочетания трёх первичных цветов, посредством аддитивного (суммирующего) либо субтрактивного (разностного) процессов синтеза. Аддитивный синтез создаёт цвет, добавляя свет к тёмному фону, а субтрактивный синтез использует пигменты или красители, чтобы избирательно блокировать свет. Понимание сути каждого из этих процессов создаёт основы понимания воспроизведения цветов.

Аддитивный Субтрактивный

Цвета трёх внешних кругов называются первичными, и они различны для каждой из диаграмм. Устройства, которые используют эти первичные цвета, могут воспроизвести максимальный диапазон цветов. Мониторы излучают свет, чтобы воспроизвести цвет в аддитивном режиме, в то время как принтеры используют пигменты или красители, чтобы поглотить свет и синтезировать субтрактивные цвета. Вот почему практически все мониторы используют комбинацию красных (R), зелёных (G) и синих (B) пикселей, а большинство цветных принтеров используют по меньшей мере голубые(C), пурпурные (M) и жёлтые (Y) чернила. Во многих принтерах в дополнение к цветным чернилам также применяются чёрные (CMYK), поскольку простое сочетание цветных чернил неспособно создать достаточно глубокие тени.


(цвета RGB)

(цвета CMYK)
красный + зелёный жёлтый голубой + пурпурный синий
зелёный + синий голубой пурпурный + жёдтый красный
синий + красный пурпурный жёлтый + голубой зелёный
красный + зелёный + синий белый голубой + пурпурный + жёлтый чёрный

Субтрактивный синтез более чувствителен к изменению рассеянного света, поскольку именно избирательное блокирование света приводит к появлению цветов. Вот почему цветные отпечатки требуют определённого типа рассеянного освещения, чтобы точно воспроизвести цвета.

Свойства цвета: тон и насыщенность

Цвет имеет два уникальных компонента, которые отличают его от ахроматического света: тон (оттенок) и насыщенность. Визуальное описание цвета основывается на каждом из этих терминов и может быть весьма субъективно, однако каждый из них может быть более объективно описан путём анализа его спектра.

Естественные цвета в действительности не являются светом определённой длины волны, но на самом деле содержат полный спектр длин волн. «Тон» описывает, какая длина волны является наиболее мощной. Полный спектр показанного ниже объекта мог бы восприниматься как синий, несмотря на то, что он содержит волны по всей длине спектра.


Несмотря на то, что максимум данного спектра находится в той же области, что и тон объекта, это не обязательное условие. Если бы у объекта присутствовали отдельные выраженные пики только в красном и зелёном диапазонах, его тон воспринимался бы как жёлтый (см. таблицу аддитивного цветосинтеза).

Насыщенность цвета - это степень его чистоты. Высоконасыщенный цвет будет содержать очень узкий набор длин волн и будет выглядеть гораздо более выраженным, чем аналогичный, но менее насыщенный цвет. Следующий пример иллюстрирует спектры насыщенного и ненасыщенного синего.

Выберите степень насыщенности: низкая высокая



Совершенно исключительное значение в жизни человека имеет орган зрения, позволяющий четко и полно знать обо всех предметах, окружающих организм. Через мы получаем 90 % всей поступающей в мозг информации. Не случайно так огромна роль зрения в нашем труде.

Глаз часто уподобляют фотоаппарату. Действительно, здесь есть немалое внешнее сходство. Глаз также состоит, во-первых, из объектива, т. е. серии преломляющих линз, которые собирают световые лучи в одну точку и позволяют поместить изображение огромных предметов на небольших участках сетчатки. Во-вторых, глаз снабжен собственно светочувствительной - специальными веществами, способными химически изменяться под действием света и тем самым посылать сигналы в мозг. Вещества эти помещаются в особым образом устроенных сетчатки, называемых по их форме палочками и колбочками. Колбочки расположены лишь в центре сетчатки и обусловливают цветное зрение. Световые колебания разной частоты, т. е. разной длины волны, по-разному влияют на вещества колбочек, отчего и происходит восприятие различных цветов. Палочки рассеяны по всей сетчатке и чувствительны только к белому свету, но зато в гораздо большей степени, чем колбочки к отдельным цветам спектра. Поэтому в сумерках, когда восприятие цветов уже отсутствует, мы все еще различаем очертания предметов, но лишь, так сказать, в черно-белом изображении. Все они кажутся одинаково серыми. Веществом, распадающимся в палочках под действием света и тем посылающим сигналы в мозг, является так называемый зрительный пурпур, . Его составной частью природа сделала витамин А. Поэтому-то ночное зрение и страдает без данного витамина. Распадаясь на свету, родопсин в темноте восстанавливается. Чем больше его имеется в восстановленном состоянии, тем глаз чувствительнее к свету. Поэтому, побыв в темноте некоторое время, мы благодаря восстановлению значительной части родопсина начинаем различать предметы, ранее абсолютно неразличимые. Подобное приспособление глаза к условиям освещенности также относится к явлениям адаптации. После часа пребывания в темноте адаптация повышает светочувствительность глаза в 200 тысяч раз. А часто ли мы задумываемся об этом чудесном свойстве своего глаза! Добавим еще, что электрический сигнал, возникающий при распаде родопсина в палочках, соединенные с ними нервные клетки сетчатки усиливают в миллион раз, только тогда получается энергия, способная Дать нервный импульс, который устремляется в мозг.

Если взять кролика и, продержав его 3-4 часа в темноте (чтобы восстановить весь зрительный пурпур), показать ему на миг освещенный предмет, а затем, вновь в темноте, удалить глаз и подействовать на него квасцами, приостанавливающими дальнейший распад родопсина, можно на такой сетчатке увидеть изображение показанного предмета. Там, где подействовал свет и пурпур распался, сетчатка будет бледной, в остальных местах - розовой. Понятно, что если кролик успеет посмотреть на несколько предметов, опыт не удастся.

Вернемся теперь к первому отделу глаза - линзам, собирающим световые лучи в узкий пучок с фокусом на сетчатке. Главной линзой является хрусталик. Когда мы смотрим на далекий предмет, от которого идут почти параллельные лучи, хрусталик становится более плоским. От ближнего предмета идут расходящиеся лучи, которые надо преломить в большей степени, чтобы дать фокус в той же точке. Поэтому при рассматривании близкого предмета хрусталик становится более выпуклым. Эти изменения хрусталика называются аккомодацией. Ими управляют высшие отделы мозга. У некоторых людей хрусталик преломляет слишком сильно и фокус возникает не на сетчатке, а перед ней. Когда дело касается близких предметов, которые и требуют сильного преломления идущих от них лучей, это не мешает зрению. Далекие же предметы кажутся расплывчатыми, ибо их изображение на сетчатке оказывается не в фокусе. Такие люди получили название близоруких. Они уменьшают излишнюю выпуклость своего хрусталика за счет двояковогнутых линз - очков.

Существует и обратное состояние. Дело в том, что с возрастом хрусталик теряет способность аккомодировать, т. е. становится при необходимости более выпуклым. Для близоруких, у которых он и без того является слишком выпуклым, это не имеет значения: они остаются близорукими всю жизнь. При нормальном же зрении с возрастом понижается способность видеть вблизи мелкие предметы. В таких случаях говорят о дальнозоркости и исправляют ее очками с двояковыпуклыми линзами. Понятно, что вдаль эти люди видят не лучше, чем. в молодости, но, во всяком случае, ненамного хуже. Лишь в этом смысле их можно назвать дальнозоркими.

свет цвет физиология восприятие

Для создания безопасных условий труда требуется не только достаточная освещенность рабочих поверхностей, но и рациональное направление света, отсутствие резких теней и бликов, вызывающих слепящее действие.

Правильная освещенность и окраска оборудования, опасных мест дает возможность следить за ними более внимательно (станок, окрашенный в однотонный цвет), а предупреждающая окраска опасных мест позволит уменьшить травматизм. Кроме того подбор правильного сочетания цветов и их интенсивности сведет до минимума время адаптации глаз при переводе взгляда с детали на рабочую поверхность. Правильно подобранная окраска может влиять на настроение рабочих, а, следовательно, и на производительность труда. Таким образом, недооценка влияния освещения, выбора цвета и света приводят к преждевременному утомлению организма, накоплению ошибок, снижению производительности труда, увеличению брака и, как следствие, к травматизму. Некоторое пренебрежение к вопросам освещенности вызвано тем, что глаз человека имеет очень широкий диапазон приспособления: от 20 лк (в полнолуние) до 100000 лк.

Естественное освещение - это видимый спектр излучения электромагнитных волн солнечной энергии длиной 380 - 780 нм (1 нм = 10 -9 м). Видимый свет (белый) состоит из спектра цветов: фиолетовый (390 - 450 нм), синий (450 - 510 нм), зеленый (510 - 575 нм), желтый (575 - 620 нм), красный (620 - 750 нм). Излучение с длиной волны более 780 нм называется инфракрасным, а с длиной волны менее 390 нм - ультрафиолетовым.

Цвет и свет взаимосвязаны между собой. Цвета, наблюдаемые человеком, делятся на хроматические и ахроматические. Ахроматические цвета (белый, серый, черный) имеют разные коэффициенты отражения и, поэтому, основной их характеристикой является яркость. Хроматические цвета (красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый) характеризуются, в основном, тоном, который определяется длиной волны и чистотой или насыщенностью (степень "разбавленности" основного цвета белым). Окраска оборудования, материалов и др. в чёрный цвет угнетает человека. При переноске стандартных ящиков белого и черного цвета все рабочие заявили, что чёрные ящики тяжелее. Чёрную нить на белом фоне видно в 2100 раз лучше, чем на черном, но при этом наблюдается резкий контраст (отношение яркостей). С увеличением яркости и освещения до известных пределов усиливается острота зрения и яркость, с которой глаз различает отдельные предметы, т.е. быстрота различения. Слишком большая яркость света отрицательно влияет на органы зрения, вызывая ослепление и резь в глазах. Приспособление глаз к изменению яркости называется тёмной и светлой адаптацией. При работе на станке тёмно-серого цвета (отражающего 5% света) и с блестящей деталью (отражающей 95% цвета) рабочий переводит взгляд со станка на деталь 1 раз в минуту, при этом на адаптацию глаза затрачивается примерно 5 секунд. За семичасовой рабочий день будет потеряно 35 минут. Если при тех же условиях работы изменить время адаптации до 1 секунды за счет правильного подбора контраста, потеря рабочего времени будет равна 7 минутам.

Неправильный подбор освещения влияет не только на потерю рабочего времени и утомление рабочих, но и увеличивает травматизм в период адаптации, когда рабочий не видит или плохо видит деталь, и выполняет рабочие операции автоматически. Подобные условия наблюдаются и при монтажных работах, работе крана и других видах работ в вечернее время при искусственном освещении. Поэтому отношение яркостей (сущность контраста) не должно быть большим.

В восприятии цветов человеком важную роль играет цветовой контраст, т.е. преувеличение действительной разницы между одновременными восприятиями. Одна французская торговая фирма заказала партию красной, фиолетовой и голубой ткани с черным узором. Когда заказ был выполнен, фирма отказалась его принять, т.к. на красной ткани вместо черного узора был зеленоватый; на голубой - оранжевый, на фиолетовой - желто-зеленоватый. Суд обратился к специалистам, и когда те закрыли ткань, то в прорезях на бумаге рисунок был черный.

В настоящее время установлено, что красный цвет возбуждает, но и быстро утомляет человека; зеленый полезен для человека; желтый вызывает тошноту и головокружение. Естественное освещение считается самым лучшим для здоровья человека.

Солнечный свет оказывает биологическое действие на организм, поэтому естественное освещение является гигиеничным. Замена естественного освещения искусственным допускается только тогда, когда по каким-либо причинам нельзя использовать (или невозможно использовать) естественное освещение рабочих мест.

Поэтому нормирование освещения производственных помещений и рабочих мест осуществляется на научной основе с учетом следующих основных требований:

  • 1. Достаточная и равномерная освещенность рабочих мест и обрабатываемых деталей;
  • 2. Отсутствие яркости, блеклости и слепящего действия в поле зрения рабочих;
  • 3. Отсутствие резких теней и контрастов;
  • 4. Оптимальная экономичность и безопасность осветительных систем.

Следовательно, для правильного светового режима необходимо учитывать весь комплекс гигиенических условий, т.е. количественную и качественную стороны освещения.

Для измерения освещенных рабочих мест и общей освещенности помещений используют люксметр типа Ю-116, Ю-117, универсальный люксметр - яркометр ТЭС 0693, фотометр типа 1105 фирмы "Брюль и Кэр". Принцип работы приборов основан на использовании фотоэлектрического эффекта - эмиссии электронов под действием света (рис 2.4.1).

При выполнении различных видов работ применяют естественное, искусственное и смешанное освещение, параметры которых регламентируются ГОСТ 12.1.013-78, СНиП ІІ-4-79 "Естественное и искусственное освещение", инструкцией по проектированию электрического освещения строительных площадок (СН 81-80). Все помещения с постоянным пребыванием людей должны иметь естественное освещение.

Там, где невозможно осуществить естественное освещение или если оно не регламентируется СНиП П-4-79, применяется искусственное или смешанное освещение.

Оптическая часть спектра, состоящая из ультрафиолетовых, видимых и инфракрасных излучений, имеет диапазон волн от 0,01 до 340 мкм. Видимое излучение, воспринимаемое глазом, называется световым и имеет длину волн от 0,38 до 0,77 мкм, а мощность такого излучения - световым потоком (F). Единицей светового потока принят люмен. Это величина, равная 1/621 светового ватта. Люмен [лм] определяется как световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площадью 530,5?10 -10 м 2 (световой поток от эталонного точечного источника в 1 канделу, расположенного в вершине телесного угла в 1 стерадиан). Стерадиан - это единичный телесный угол щ, который является частью среды радиусом 1 м и площадью сферической поверхности, основание которой равно 1 м 2 .

где щ - единичный телесный угол, 1 стер;

S - площадь сферической поверхности, 1 м 2 ;

R - радиус сферической поверхности, 1 м.

Пространственная плотность светового потока в данном направлении называется силой света (I). За единицу силы света принята кандела [кд].

где Й - сила света, кд;

F - световой поток, лм.

Величина светового потока, который приходится на единицу освещаемой поверхности, называется освещенностью (Е). Измеряется освещенность в люксах. Люкс - освещенность поверхности площадью 1м 2 равномерно распределенным световым потоком в 1 лм.

Видимость предметов зависит от части света, отраженного предметом, и характеризуется яркостью (В). Измеряется яркость в [кд/м 2 ].

где б - угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

Яркость - светотехническая величина, на которую непосредственно реагирует глаз. Гигиенически приемлемым являются яркости до 5000 кд. Яркость в 30000 кд и выше является ослепляющей. К качественным показателям освещенности относятся фон и контрастность, видимость, показатель ослепленности и т.д.

Фон - это поверхность, которая примыкает к объекту (различие). Фон считается светлым при коэффициенте отражения с > 0,4; средним при с = 0,2-0,4; и темным при с < 0,2.

Контрастность характеризуется отношением яркостей рассматриваемого предмета и фона:

Контрастность освещения считается большой при > 0,5; средней при = 0,2-0,5; и малой при < 0,2.

Равномерность освещения характеризуется отношением минимальной освещенности к её максимальному значению в пределах всего помещения.

Естественное освещение

Естественное освещение является наиболее приемлемым человеку, поэтому помещения с постоянным пребыванием людей должны иметь в основном естественное освещение. Естественное освещение осуществляется через оконные, дверные проемы, через фонари, прозрачные кровли. Поэтому оно подразделяется на (рис.2.4.2):

  • а) верхнее освещение - через световые фонари, прозрачные кровли;
  • б) боковое освещение - через окна;
  • в) комбинированное освещение - через окна и фонари, и т.д.

Критерием естественной освещенности является коэффициент естественной освещенности (КЕО или Е Н), который представляет отношение естественной освещенности светом неба в некоторой точке заданной плоскости внутри помещения Е вн к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода Е нар, и выражается в процентах:

Нормирование КЕО проводится согласно с требованиями СНиП ЙЙ-4-79 "Естественное и искусственное освещение. Нормы проектирования".

Согласно СНиП ЙЙ-4-79 при одностороннем боковом освещении критерием оценки является минимальное значение КЕО в точке, расположенной в 1 м от стены, наиболее удаленной от световых проемов, на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности или пола. Под характерным разрезом помещения понимается поперечный разрез помещения, плоскость которого перпендикулярна к плоскости остекления световых проемов. В характерный разрез помещения должны попадать участки с наибольшим количеством рабочих мест. За условную рабочую поверхность принимается горизонтальная поверхность, расположенная на высоте 0,8 м от пола. При двустороннем боковом освещении критерием оценки является минимальное значение KЕO в середине помещения, в точке на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (пола).

При верхнем, боковом и комбинированном освещении нормируется среднее значение КЕО (табл. 2.4.1.).

Все параметры освещения определяются разрядом зрительной работы. Разряд зрительной работы при расстоянии от объекта различия до глаз работающего более 0,5 м определяется отношением минимального размера объекта различия (d) к расстоянию от этого объекта до глаз работающего (l). Под объектом различия понимается рассматриваемый предмет, отдельная его часть или дефект, которые требуется различать в процессе работ. Всего установлено восемь разрядов зрительной работы (табл. 2.4.1).

Нормированное значение KЕO (Е н) принимается в зависимости от разряда зрительной работы, особенностей светового климата и солнечного климата.

Для зданий располагаемых в Й, II, ЙV и V поясах светового климата стран СНГ, в зависимости от вида освещения, боковое или верхнее нормированное значение КЕО (Е н б, Е н в) определяется по формуле:

где m-коэффициент светового климата; с-коэффициент солнечности климата.

Значение Е н III находится по таблице 2.4.1; коэффициент светового климата (m) - по таблице 2.4.2; коэффициент солнечности климата (С) - по таблице 2.4.3. Неравномерность естественного освещения производственных и общественных зданий с верхним или с верхним и боковым освещением основных помещений для детей и подростков при боковом освещении не должна превышать 3:l.

Неравномерность естественного освещения не нормируется для помещений с боковым освещением при выполнении работ VЙЙ, VIII разрядов при верхнем и комбинированном освещении, для вспомогательных и общественных зданий ЙЙЙ и IV групп (п.1.2 СНиП ЙЙ-4-79). При проектировании зданий в ЙЙЙ и V климатических районах, где выполняются работы I - IV разрядов, необходимо предусматривать солнцезащитные устройства. При естественной освещенности помещений большое значение имеет уход за окнами и фонарями. Грязные стекла задерживают до 50% всего света. Поэтому должна производиться регулярная чистка стекол и побелка помещений. С незначительным выделением пыли чистки стекол производится через шесть месяцев, побелка - один раз в три года; в пыльных - четыре раза в год чистка и один раз в год побелка.

При проектировании зданий одной из важных задач является правильный расчет площади световых проемов при естественном освещении.

Если площадь световых проемов будет меньше требуемой, то это приведет к снижению освещенности и, как следствие, к снижению производительности труда, повышенной утомляемости работающих, заболеваниям и появлению травматизма.

Таблица 2.4.1. Нормирование коэффициента естественного освещения

Характеристика

зрительной работы

Наименьший размер объекта различия, мм

зрительной работы

КЕО (Е н IV), %

при верхнем и комбинированном освещении

при боковом освещении

в зоне со стойким снеговым покровом

на остальной территории

Наивысшая точность

Меньше 0,15

Очень высокая точность

От 0,15 до 0,8

Высокая точность

Выше 0,3 до 0,5

Средняя точность

Выше 0,5 до 1,0

Малая точность

Выше 1,0 до 5,0

Грубая (очень малая точность)

Больше 0,5

Работа с материалами, которые светятся, и изделиями в горячих цехах

Больше 0,5

Общие наблюдения за ходом производственного процесса:

постоянное

периодическое при постоянном нахождении людей

периодическое при периодическом нахождении людей

Таблица 2.4.2. Значение коэффициента светового климата, m

Таблица 2.4.3. Значение коэффициента солнечности климата, с

Пояс светового климата

При световых проемах, сориентированных по сторонам горизонта (азимут), град

При зенитных фонарях

во внешних стенах строений

в прямоугольных и трапециидальных фонарях

в фонарях типа "шод"

  • а) севернее 50°с.ш.
  • б) 50°с.ш. и южнее
  • а) севернее 40°с.ш.
  • б) 40°с.ш. и южнее

Рис. 2.4.3

Для исправления допущенной ошибки необходимо дополнительно вводить искусственное освещение, что вызовет постоянные дополнительные расходы. Если площадь световых проемов будет больше, то потребуется постоянные дополнительные расходы на отопление зданий. Поэтому СНиП II-4-79 запрещает для отапливаемых зданий предусматривать площадь световых проемов больше, чем требуется по настоящим нормам (рис. 2.4.5). Установленные размеры световых проемов допускается изменять на +5, -10%.

Площадь световых проемов в свету рассчитывают

При боковом освещении, м 2:

  • (2.4.8)
  • - при верхнем освещении, м 2:

где - нормированное значение КЕО;

S 0 и S ф - площадь окон и фонарей;

S п - площадь пола;

з 0 и з ф - световые характеристики окна и фонаря (ориентировочно приняты для окон 8,0 - 15,0, для фонарей 3,0 - 5,0).

Световая характеристика окон (з о) оценивается по таблице 26 с учетом характеристики помещения, а световая характеристика фонаря или светового проема (з ф) - по таблицам 31 и 32 приложения 5 СНиП ЙЙ-4-79 с учетом характеристик помещения и фонарей.

Коэффициенты, учитывающие затенение окон противостоящими зданиями (К зд), тип фонаря (К ф) определяются по таблице 3 СНиП II-4-79; К з - коэффициент запаса принимается по таблице 5.

При боковом освещении до проведения работ необходимо оценить отношение ширины (глубины) помещений (В) к расстоянию от уровня условной рабочей поверхности до верхнего края окна (h 1).

Общий коэффициент (рис.2.4.3.) светопропускания (ф 0), зависит от коэффициентов светопропускания материала (ф 1), коэффициентов, учитывающих потери света в переплетах светопроема (ф 2), потери света в несущих конструкциях (ф 3), потери света в солнцезащитных устройствах (ф 4), потери света в защитной сетке, устанавливаемой под фонарями (ф 5 =0,9). Значения коэффициентов приведены в СНиП II-4-79 приложения 5 таблицы 28, 29.

Коэффициенты, которые учитывают повышение КЕО от отражения света (r 1 и r 2) находят по таблицам 30 и 33 приложения 5 СНиП ЙЙ-4-79 с учётом коэффициента отражения (с ср) и характеристик помещения.

Чтобы правильно рассчитать площадь световых проемов (в свету) при боковом (S 0) или верхнем (S ф) освещении, необходимо знать не только параметры проектируемого помещения, но и виды работ, для которых проектируется здание, в каком световом климате Украины или СНГ строится объект, взаимное расположение объектов.

0

Чтобы видеть, нам нужен свет. Это положение может показаться слишком очевидным, чтобы заслуживать упоминания, однако оно не всегда было столь банальным. Платон думал, что зрительное восприятие существует не потому, что свет проникает в глаз, а потому, что частицы, исходящие из глаз, обволакивают окружающие предметы. Трудно представить себе теперь, почему Платон не попытался разрешить проблему с помощью простых экспериментов. Хотя для философов вопрос о том, каким образом мы видим, всегда был излюбленной темой размышлений и теоретических построений, только за последнее столетие эта проблема стала предметом систематических исследований; это довольно странно, поскольку все научные наблюдения зависят от показаний человеческих органов чувств и главным образом от зрения.

В течение последних 300 лет существовали две соперничавшие теории относительно природы света. Исаак Ньютон (1642-1727) считал, что свет - это поток частиц, в то время как Христиан Гюйгенс (1629-1695) утверждал, что свет представляет собой, по всей видимости, колебание небольших эластичных сферических образований, соприкасающихся друг с другом и перемещающихся во всепроникающей среде - эфире. Любое возмущение этой среды, как он считал, будет распространяться во всех направлениях в виде волны, а эта волна и есть свет.

Полемика относительно природы света - одна из наиболее впечатляющих и интересных в истории науки. Основным вопросом на ранних стадиях дискуссии был вопрос о том, распространяется ли свет с определенной скоростью или он достигает цели мгновенно. Ответ на этот вопрос был получен совершенно неожиданно датским астрономом Рёмером (1644-1710). Он изучал затмение четырех ярких спутников, вращающихся вокруг Юпитера, и обнаружил, что периоды между затмениями нерегулярны и зависят от расстояния между Юпитером и Землей.

В 1675 г. он пришел к заключению, что этот факт определяется временем, которое требуется, чтобы свет, исходящий от спутников Юпитера, достиг глаза экспериментатора; время возрастает с увеличением расстояния вследствие ограниченной скорости света. Действительно, расстояние от Земли до Юпитера равно примерно 299 274000 км - это в два раза больше, чем расстояние от Земли до Солнца; наибольшая временная разница, которую он наблюдал, равнялась 16 мин. 36 сек. -на этот отрезок времени раньше или позже, чем полагалось по расчету, начиналось затмение спутников. На основании несколько ошибочной оценки расстояния до Солнца он подсчитал, что скорость света равна 308 928 км/сек. Современные знания о диаметре земной орбиты позволяют нам уточнить эту величину и считать ее равной 299 274 км/сек, или Зх10 10 см/сек. Скорость света, таким образом, на небольших расстояниях от Земли измеряется очень точно, и теперь мы рассматриваем ее как одну из основных констант Вселенной.

Вследствие ограниченной скорости света и определенной задержки нервных импульсов, поступающих я мозг, мы всегда видим прошлое. Наше восприятие Солнца запаздывает на 8 мин.; всем известно, что наиболее отдаленный из видимых невооруженным глазом объектов - туманность Андромеды уже больше не существует и то, что мы видим, происходило за миллион лет до появления человека на Земле.

Скорость света, равная Зх10 10 см/сек, строго сохраняется только в полном вакууме. Когда свет проходит через стекло или воду или какую-нибудь другую пропускающую свет среду, его скорость уменьшается в соответствии с показателем преломления света (приблизительно в соответствии с плотностью этой среды). Это замедление скорости света исключительно важно, так как именно благодаря этому свойству света призма преломляет свет, а линзы создают изображение. Закон преломления (отклонение луча света в зависимости от изменения показателя преломления) был впервые установлен Снеллиусом, профессором математики, в Лейдене в 1621 году. Снеллиус умер в возрасте 35 лет, оставив свои работы неопубликованными. Декарт сформулировал Закон преломления одиннадцать лет спустя. Закон преломления гласит:

«При переходе света из среды А в среду В отношение синуса угла падения к синусу угла преломления света является константою».

Мы можем видеть, как это происходит, из простой диаграммы (рис. 2, 3): если АВ - луч, проходящий через плотную среду в вакуум (или воздух), то он появится в воздухе под углом i по линии BD.

Закон гласит, что sin i/sin r является постоянной величиной. Эта константа и есть индекс рефракции, или показатель преломления, обозначенный v.

Ньютон думал, что частицы света (корпускулы) притягиваются к поверхности плотной среды, Гюйгенс полагал, что преломление возникает вследствие того, что скорость света уменьшается в плотной среде. Эти предположения были высказаны задолго до того, как французский физик Фуко доказал прямыми измерениями, что скорость света в плотной среде действительно уменьшается. Некоторое время считали, что корпускулярная теория света Ньютона совершенно ошибочна и что свет - это только ряды волн, проходящих через среду, эфир; однако начало нынешнего столетия ознаменовалось важным доказательством того, что волновая теория света не объясняет всех световых явлений. Теперь считается, что свет - это и частицы и волны.

Свет состоит из единиц энергии - квантов. Они соединяют в себе свойства и частиц и волн. Коротковолновый свет содержит большее количество волн в каждом пучке, чем длинноволновый. Этот факт находит свое отражение в правиле, согласно которому энергия одного кванта является функцией частоты, иначе говоря, E = hv, где Е - это энергия в эрг/ сек; h - небольшая постоянная величина (константа Планка), а υ частота излучения.

Когда свет преломляется призмой, каждая частота отклоняется под несколько иным углом, так что из призмы пучок света выходит в виде веера лучей, окрашенных во все цвета спектра. Ньютон открыл, что белый свет состоит из всех цветов спектра, разложив солнечный луч на спектр и затем обнаружив, что он может вновь смешать цвета и получить белый свет, если пропускать спектр через вторую сходную призму, установленную в обратном положении.

Ньютон обозначил семь цветов своего спектра следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Никто в действительности не видит синий цвет в чистом виде, еще более сомнителен оранжевый. Подобное деление спектра на цвета объясняется тем, что Ньютон любил число 7, и он добавил оранжевый и синий, чтобы получить магическую цифру!

Теперь мы знаем то, чего не знал Ньютон, а именно, что каждый спектральный цвет, или оттенок, является светом определенной частоты. Мы знаем также, что так называемое электромагнитное излучение, по существу, ничем не отличается от светового. Физическое различие между радиоволнами, инфракрасным светом, видимым светом, ультрафиолетовыми и рентгеновскими лучами состоит в их частоте. Только очень узкий диапазон этих частот возбуждает глаз и дает изображение и ощущение цвета. Диаграмма (рис. 2, 5) показывает, как узка эта полоса в физической картине волн. Взгляните на этот рисунок, ведь мы почти слепы!

Если нам известна скорость света и его частота, то легко подсчитать длину волны, однако в действительности частоту света трудно измерить непосредственно. Легче измерить длину световых волн, чем их частоту, хотя это не относится к низкочастотным радиоволнам. Длина световой волны измеряется путем расщепления света не с помощью призмы, а с помощью специальной решетки из тонких тщательно начерченных по определенным правилам линий, в результате чего также возникают цвета спектра. (Это можно видеть, если держать диск светового поляризатора наклонно, под тупым углом к источнику света: тогда отражение будет состоять из ярких цветов.) Если даны расстояния между линиями, нанесенными по определенному образцу и составляющими решетку, и угол, благодаря которому возникает пучок света данного цвета, то длина волны может быть определена очень точно. Подобным путем можно установить, что голубой свет имеет длину волны приблизительно 1/100 000 см, в то время как длина волны красного света равна 1/175 000 см. Длина световой волны важна для установления границ разрешающей способности оптических инструментов.

Мы не можем невооруженным глазом видеть один квант света, тем не менее рецепторы сетчатки настолько чувствительны, что они могут стимулироваться одним квантом света. Однако, чтобы получить ощущение вспышки света, необходимо несколько (от пяти до восьми) квантов света. Отдельные рецепторы сетчатки настолько чувствительны, насколько это вообще возможно для какого-либо детектора света, поскольку квант - это наименьшее количество лучистой энергии, которое вообще может существовать. К сожалению, прозрачные проводящие среды глаза далеки от совершенства и скрадывают возможности сетчатки воспринимать свет. Только около 10% света, поступающего в глаз, достигают рецепторов, остальное теряется вследствие поглощения и расщепления внутри глаза прежде, чем свет достигнет сетчатки. Несмотря на эти потери, оказывается возможным при идеальных условиях видеть одну свечу на расстоянии 27 353 м.

Идея квантовой природы света имеет важное значение для понимания зрительного восприятия; эта идея вдохновила на ряд изящных экспериментов, направленных на выяснение физических свойств света и его восприятия глазом и мозгом. Первый эксперимент, посвященный изучению квантовой природы света, был проведен тремя физиологами - Гехтом, Шлером и Пиренном в 1942 г. Их работа является сейчас классической. Предполагая, что глаз должен обладать почти или целиком такой же чувствительностью, как это теоретически возможно, они задумали очень остроумный эксперимент, чтобы выяснить, сколько квантов света должно быть воспринято рецепторами, чтобы мы увидели вспышку света. Доказательство основывалось на использовании распределения Пуассона. Оно описывает ожидаемое распределение попаданий в цель. Идея состоит в том, что по крайней мере частично изменения чувствительности глаза во времени связаны не с состоянием самого глаза или нервной системы, а с колебаниями энергии слабого светового источника. Вообразите беспорядочный поток пуль, они не будут попадать в цель с постоянной скоростью, скорость будет варьировать, сходным образом наблюдаются колебания и в количестве квантов света, которые достигают глаза. Данная вспышка может содержать малое или большое число квантов света, и вероятность обнаружить ее будет тем выше, чем больше она превышает среднее число квантов во вспышке. Для яркого света этот эффект несуществен, однако, поскольку глаз чувствителен и к нескольким квантам, колебания энергии света важно учитывать при минимальных величинах этой энергии, необходимых для возникновения ощущения.

Представление о квантовой природе света важно также и для понимания способности глаза выделять тонкие детали. Одна из причин, почему мы можем читать при свете луны только крупный газетный шрифт, состоит в том, что количество квантов, попадающих на сетчатку, недостаточно, чтобы создать полный образ за тот короткий промежуток времени, который требуется глазу, чтобы интегрировать энергию, - это число порядка одной десятой секунды. В действительности это еще не все, что может быть сказано по этому поводу; чисто физический фактор, обусловленный квантовой природой света, способствует появлению хорошо известного зрительного феномена - ухудшению остроты зрения при тусклом свете. До последнего времени это явление трактовалось исключительно как свойство глаза. В самом деле часто довольно трудно установить, следует ли относить тот или иной зрительный феномен к области психологии, физиологии или физики.

Как возникают изображения? Проще всего изображение может быть получено с помощью булавочного отверстия. Рисунок показывает, как это делается. Луч от части предмета х может достигнуть только одной части экрана у - той части, которая расположена на прямой линии, проходящей через булавочное отверстие. Каждая часть предмета освещает соответствующую часть экрана, так что на экране создается перевернутое изображение предмета. Полученное с помощью булавочного отверстия изображение будет довольно тусклым, потому что для четкого изображения нужно еще меньшее отверстие (хотя, если отверстие слишком мало, изображение будет расплывчатым, поскольку нарушается волновая структура света).

Линза фактически представляет собой пару призм. Они направляют поток света от каждой точки объекта к соответствующей точке экрана, давая, таким образом, яркое изображение. В отличие от булавочного отверстия, линзы хорошо работают только тогда, когда соответствующим образом подобраны и правильно установлены. Хрусталик может быть неправильно настроен и не соответствовать глазу, в котором он находится. Хрусталик может фокусировать изображение спереди или сзади сетчатки, вместо того чтобы фокусировать его на самой сетчатке, что приводит к появлению близорукости или дальнозоркости. Поверхность хрусталика может быть недостаточно сферической и вызывать искажение или нарушение четкости изображения. Роговица может быть неправильной формы или иметь изъяны (возможно, вследствие повреждения металлической стружкой на производстве или песчинкой при вождении машины без предохранительных очков). Эти оптические дефекты могут быть скомпенсированы с помощью искусственных линз - очков. Очки исправляют дефекты аккомодации, изменяя силу хрусталика; они корригируют астигматизм, добавляя несферический компонент. Обычные очки не могут исправить дефекты поверхности роговицы, однако, новые роговичные линзы, установленные на самом глазу, образуют новую поверхность роговицы.

Очки удлиняют нашу активную жизнь. С их помощью мы можем читать и выполнять сложную работу в старости. До их изобретения работники умственного и физического труда становились беспомощными вследствие недостатков зрения, хотя они были еще сильны разумом.

Используемая литература: Р. Л. Грегори
Глаз и мозг. Психология зрительного восприятия: Л.Р. Грегори
под ред. Э. Пчелкина, С. Елинсон.-м. 1970 г.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.