Хокс гены. Hox гены. Почему IRES лучше, чем кэп




Эволюция [Классические идеи в свете новых открытий] Марков Александр Владимирович

Hox -гены обрели свободу - и змеи потеряли ноги

Hox -гены обрели свободу - и змеи потеряли ноги

Напоследок рассмотрим исследование, проливающее свет на роль Hox -генов в эволюции позвоночных. Как известно, важнейшая функция Hox -генов состоит в том, что они подробно размечают эмбрион вдоль передне-задней оси. Дальнейшая судьба эмбриональных клеток, оказавшихся в той или иной части эмбриона, зависит от набора Hox -генов, экспрессирующихся в этой части. Для каждого Hox -гена характерна своя область экспрессии. Например, гены Hox12 и Hox13 , как правило, работают только в задней части эмбриона, которая в дальнейшем станет хвостом; гены Hox10 у некоторых позвоночных работают от заднего конца эмбриона до той черты, которая станет границей между грудным отделом (где на позвонках есть ребра) и поясничным, где ребра не развиваются. «Hox -код», определяющий план строения организма, сложен и не совсем одинаков у разных групп позвоночных. Вряд ли можно сомневаться в том, что многие крупные эволюционные преобразования, затрагивающие план строения, были связаны с изменениями в структуре и экспрессии Hox -генов. Однако хорошо изученных примеров, иллюстрирующих эту связь, пока немного.

Hox-гены дрозофилы и человека. Прямоугольниками обозначены гены в том порядке, в каком они расположены в хромосомах. У мухи один набор Hox-генов, у человека - четыре, частично дублирующие друг друга (они образовались из одного в результате двух полногеномных дупликаций). Кластеры A, B, C, D находятся на разных хромососмах (у мыши это хромосомы № 6, 11, 15 и 2, у человека - № у, 17, 2, 12). У змей, в отличие от мыши и человека, в кластере D отсутствует 12-й ген (Hoxd12). На изображениях мухи и зародыша человека области экспрессии соответствующих генов окрашены теми же цветами, что и сами гены. По последним данным, соответствие между Hox-генами членистоногих и позвоночных несколько менее однозначно, чем показано на этой схеме.

У многих животных, в том числе у позвоночных, Hox -гены в геноме располагаются кластерами, т. е. группами вплотную друг другу. Самое удивительное, что порядок расположения генов в Hox -кластерах часто (хотя и не всегда) совпадает с распределением областей экспрессии вдоль передне-задней оси: впереди находятся «головные» гены, за ними следуют гены, отвечающие за формирование средних участков тела, а замыкают кластер «задние» гены, управляющие развитием задних частей туловища. По-видимому, это связано со способом регуляции экспрессии Hox -генов: участок ДНК, где находится Hox -кластер, постепенно «раскрывается», становясь доступным для транскрипции по мере движения от переднего конца тела к заднему. Поэтому у переднего конца тела экспрессируются только передние Hox -гены, а чем ближе к хвосту, тем более задние гены включаются в работу. Удобный способ регуляции генов, отвечающих за разметку эмбриона вдоль передне-задней оси!

У предков позвоночных, как у современного ланцетника, в геноме был один Hox -кластер, включающий 14 генов. На ранних этапах эволюции позвоночных произошло две полногеномные дупликации. В результате позвоночные приобрели четыре Hox -кластера вместо одного. Это открыло перед позвоночными большие эволюционные возможности (см. главу 5). Отдельные Hox -гены в некоторых кластерах были утрачены, но в целом их набор и порядок расположения остался сходным во всех четырех кластерах. Паралогичные гены (т. е. копии одного и того же Hox -гена в разных Hox -кластерах) приобрели немного различающиеся функции, что дало возможность тонко регулировать эмбриональное развитие и облегчило развитие новых планов строения.

Биологи из Швейцарии, Новой Зеландии и США изучили работу Hox -генов у чешуйчатых рептилий (отряд Squamata ) (Di-Poi et al., 2010 ). Этот отряд, объединяющий ящериц и змей, интересен разнообразием планов строения и вариабельностью признаков, связанных с передне-задней дифференцировкой туловища (относительная длина отделов тела, число позвонков в них и т. п.) Поэтому логично было предположить, что Hox -кластеры чешуйчатых должны обладать специфическими особенностями и что Hox -гены ящериц и змей должны различаться.

Ранее было показано, что области экспрессии передних Hox -генов у змей расширились в заднем направлении по сравнению с другими позвоночными. Это хорошо согласуется с общим удлинением тела. Кроме того, было установлено, что правило колинеарности (т. е. одинаковый порядок расположения генов в кластере и областей их экспрессии в эмбрионе) у змей строго соблюдается.

Исследователи сосредоточились на задних Hox -генах (от 10-го до 13-го). Главными объектами исследования были хлыстохвостая ящерица Aspidoscelis uniparens и маисовый полоз Elaphe guttata . Кроме того, были отсеквенированы Hox -кластеры нескольких других ящериц, гаттерии и черепахи. Для сравнения использовались Hox -кластеры курицы, человека, мыши и лягушки.

Набор задних Hox -генов у всех исследованных видов оказался одинаковым, если не считать того, что у змей и лягушек «потерялся» ген Hoхd12 (12-й Hox -ген из кластера D ). Важные изменения были обнаружены в регуляторных участках Hox -кластеров. Оказалось, что все чешуйчатые рептилии утратили регуляторный участок между генами Hoхd13 и Evх2 , а змеи вдобавок потеряли консервативный некодирующий элемент между Hoхd12 и Hoхd13 и некоторые регуляторные участки в других Hox -кластерах. Неожиданным результатом оказалось присутствие в Hox -кластерах чешуйчатых множества встроившихся мобильных генетических элементов. В результате общая длина задней части Hox -кластеров у чешуйчатых значительно выросла по сравнению с другими наземными позвоночными.

Все это, по-видимому, говорит о том, что у чешуйчатых ослабли эволюционные ограничения, препятствующие накоплению изменений в задней части Hox -кластеров. Очищающий отбор, отбраковывающий подобные изменения у других позвоночных, в эволюции ящериц и змей действовал менее эффективно. Этот вывод подтвердился и в ходе анализа кодирующих участков Hox -генов. В этих участках у ящериц, и особенно у змей, по сравнению с другими позвоночными накопилось много значимых замен. Одни из них, по-видимому, зафиксировались случайно, из-за ослабления очищающего отбора, тогда как другие закрепились под действием положительного отбора, т. е. были полезными.

Изучение характера экспрессии задних Hox -генов у эмбрионов ящерицы и полоза подтвердило предположение о том, что изменения плана строения в эволюции чешуйчатых были тесно связаны с изменениями в работе задних Hox -генов.

У ящерицы, как и у других наземных позвоночных, передний край области экспрессии генов Hoxa10 и Hoxc10 в точности соответствует границе между грудным и поясничным отделами. Одной из функций этих генов является подавление развития ребер. У змей нет поясничного отдела, а на бывших крестцовых позвонках (у змей они называются клоакальными) имеются особые раздвоенные ребра. По-видимому, эти особенности связаны с тем, что Hox -гены у предков змей утратили способность останавливать рост ребер.

Область экспрессии Hoxa10 и Hoxc10 у полоза заходит далеко в грудной отдел. Эти гены отвечают также за своевременное прекращение роста грудного отдела. По-видимому, эта их функция у змей тоже ослаблена, что могло быть одной из причин удлинения грудного отдела у змей по сравнению с их предками - ящерицами. Удлинение хвостового отдела у змей связано с тем, что из четырех генов, «тормозящих» рост хвоста у ящериц (Hoxa13 , Hoxc13 , Hoxd13 , Hoxd12 ) один ген у змей полностью утрачен (Hoxd12 ), а два других (Hoxa13 , Hoxd13 ) не участвуют в передне-задней «разметке» эмбриона и используются только в формировании половых органов.

Многочисленные случаи независимой утраты и частичной редукции конечностей у чешуйчатых тоже могут быть связаны с тем, что в этом отряде задние Hox -гены получили нетипичную для других животных эволюционную «свободу». На них стал слабее действовать очищающий отбор, что позволило быстро накапливать мутации.

Области экспрессии задних Hox-генов у ящерицы и змеи. У ящерицы перед хвостовыми позвонками расположены два крестцовых (показаны темно-серым цветом), затем следует один рудиментарный поясничный позвонок (белый), а дальше идут грудные позвонки (серые). У змеи нет поясничного отдела, а вместо крестцовых имеются четыре клоакальных позвонка с раздвоенными ребрами (темно-серые). Вертикальными прямоугольниками показаны области экспрессии задних Hox-генов. Из Di-Poi et al., 2010.

Известно, что задние Hox -гены играют ключевую роль не только в оформлении задних отделов туловища, но и в развитии конечностей. Поэтому некоторые мутации этих генов, ведущие, например, к удлинению тела или к редукции поясничного отдела, теоретически могут приводить и к таким побочным эффектам, как редукция конечностей. Удлинение тела в сочетании с редукцией конечностей встречается и в других группах позвоночных (например, у некоторых амфибий). Было ли это связано с такими же изменениями в работе Hox -генов, как у змей, или с другими, покажут дальнейшие исследования.

Эволюционная биология развития - быстро развивающаяся дисциплина, от которой следует ожидать важнейших научных прорывов. Расшифровка генно-регуляторных сетей, управляющих развитием, - одна из самых насущных задач биологии. Ее решение позволит понять не только соотношение между генотипом и фенотипом, но и важнейшие правила и закономерности эволюции сложных организмов. Когда эти правила, известные нам сегодня лишь в общих чертах, будут изучены досконально, вплоть до построения строгих математических моделей, перед человечеством откроются небывалые возможности. Проектирование «с чистого листа» биологических систем с нужными нам свойствами - лишь одна из них. Другая - совершенствование нашей собственной природы. Все это будет. Нужно лишь четко уяснить, для каких целей это нужно будущему человечеству, и надеяться, что культурное, социальное и морально-этическое развитие человечества к тому времени исключит возможность использования этих открытий во вред.

Из книги Удивительная биология автора Дроздова И В

Морские змеи Около 350 млн лет тому назад дышащий воздухом сородич целаканта – латимерий выкарабкался из воды на своих неуклюжих кистеперых плавниках и стал первым позвоночным, начавшим жить на суше. Растения и беспозвоночные уже успели распространиться там, проникнув с

Из книги Экспериментальные исследования способностей животных к количественным оценкам предметного мира автора Резникова Жанна Ильинична

Две ноги … Правда, с протестом выступили птицы, поскольку им показалось, что и у них лишь две ноги. Дж. Оруэлл «Скотный двор» Значительная часть исследований, посвященных изучению способности животных к счету, была проведена на птицах. Первая детальная работа принадлежит

Из книги Наши знакомые незнакомцы автора Воловник Семен Вениаминович

Четыре ноги Он, казалось, был чем-то удивлен. Глаза его возвращались к моим рукам. Он вытянул свою руку и стал медленно считать свои пальцы. Герберт Уэллс «Остров доктора Моро». Первые опыты, выявляющие способность к счету у четвероногих, были проведены на макаках резусах

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

Умелые ноги Образ паука в нашем представлении тесно связан с паутиной (хотя тенета строит лишь треть всех пауков). Остановимся перед ловчей сетью паука-крестовика. Она растянулась над лесной тропинкой, слегка пружинит от дуновений ветра, сияет каплями росы… Красота, да и

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

ЧАСТЬ IV. СЕМЕНА ГМО ВЫРЫВАЮТСЯ НА СВОБОДУ

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Антропологический детектив. Боги, люди, обезьяны... [с иллюстрациями] автора Белов Александр Иванович

Из книги С утра до вечера автора Акимушкин Игорь Иванович

У КОГО НОГИ КАК РУКИ? Но спросим себя сами: существуют ли какие-либо научные основания считать предком животных антропоморфное существо? Такие основания нам дает теория биологической энтропии. Вот некоторые выдержки из неё.У человека опорой тела является стопа -

Из книги Тропическая природа автора Уоллес Альфред Рассел

Дай бог ноги! Органы чувств обеспечивают животным, так сказать, превентивную, то есть предупредительную, оборону. Это их разведчики. Но когда враг замечен (учуян или услышан), животные, подпустив его на известное расстояние, обычно удирают. Эту критическую дистанцию, ближе

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Змеи К счастью, змеи не так многочисленны и назойливы, как ящерицы, а то едва ли можно было бы жить в тропиках. Сначала путешественник удивляется, не видя этих животных, но скоро приходит к убеждению, что их вокруг него множество. Человек, питающий к змеям обычное отвращение

Из книги Человек дарует имя автора Краснопевцев Валентин Павлович

Медузы - получившие свободу зооиды До сих пор мы не ставили вопроса, способны ли те или иные из множества прошедших перед нами «коллективных» образований самопроизвольно делиться на составные части и добровольно отпускать от себя отдельных зооидов или какие-либо их

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Голова, ноги, хвост… Не только внешность в целом, форма тела животного, но и приметные особенности строения отдельных частей его или органов нашли отражение в кличках. Да и как не обратить самое пристальное внимание при первом же, пусть даже мимолетном знакомстве на такие

Из книги Мир животных автора Ситников Виталий Павлович

Гены, которые мы потеряли Эволюция гоминид сопровождалась не только приобретениями, но и потерями. Некоторые гены, которые у шимпанзе и других обезьян нормально работают, у человека выключились, превратились в молчащие псевдогены. В 1999 году Мэйнард Олсон из

Все мы немного мутанты, и у каждого своя ДНК, единственная и — не считая близнецов и клонов — неповторимая. Однако широкая публика привыкла мутантов бояться, представляя себе каких-нибудь несчастных жителей Марса из кинохита «Вспомнить всё»: с лишней рукой, недостающими ребрами или круто деформированным телом. Такие мутации тоже известны, и сегодня можно искусственно вырастить мух с ногами на голове или мышей с двумя верхними челюстями. Главное — правильно выбрать цель — небольшую группу очень важных генов, определяющих строение тела животных.

С тех пор как в 1906 году один из отцов-основателей современной генетики Томас Морган начал культивировать плодовых мушек, они стали одними из самых изученных животных на планете. Небольшие размеры, неприхотливость, а главное — короткий жизненный цикл сделали дрозофил популярной моделью для генетических исследований. Уже к середине ХХ века перед глазами ученых прошли мириады мушек с самыми странными проявлениями мутаций, с фиолетовыми или белыми глазами, без щетинок на голом теле… Но то, что увидел в конце 1940-х сотрудник Калифорнийского технологического института Эдвард Льюис, надолго зацепило его взгляд. У мухи была дополнительная пара крыльев, как у какой-нибудь бабочки.

Формирование сегментированного тела дрозофилы начинается задолго до работы Hox-генов — еще с матричной РНК, которая внедряется в яйцеклетку даже до оплодотворения, на стадии созревания. Одни из них сосредоточены в передней части клетки, другие — в задней, так что в первые часы развития эмбриона, когда на этих мРНК активно синтезируются белки, в нем возникает градиент их концентрации: на переднем полюсе больше белка Bicoid, на заднем — Nanos. Разная концентрация белков запускает в работу разные гены семейств Gap и Pair-Rule, которые ответственны за сегментирование эмбриона. И лишь когда сегменты достаточно оформились, в дело вступают гомеозисные гены Hox, связанные со специализацией сегментов. За открытие этих механизмов в 1995 году Эрик Вишаус и Кристиана Нюсляйн-Фольхард разделили с Эдвардом Льюисом Нобелевскую премию по физиологии и медицине.

История мухи: развитие

Льюис не первым обратил внимание на такое уродство — и задуматься было над чем. Организм животного развивается из одной клетки, и каждое новое поколение клеток несет тот же первоначальный набор хромосом и генов (за вычетом половых клеток, которые появляются не сразу). В разных тканях и частях тела активируется слегка разный набор генов — и клетки развиваются по разному сценарию. Одни образуют ножки дрозофилы, другие — ее антенны, третьи — крылья, повинуясь генам, которые дирижируют их ростом. Сбой в работе генов чреват для мухи серьезными нарушениями, например появлением дополнительной пары крыльев или ног, выросших между глаз, на месте антенн.

Наш эксперт Павел Елизарьев, младший научный сотрудник Лаборатории регуляции генетических процессов Института биологии гена РАН: «Так сложилось, что комплексы гомеозисных генов стали одними из самых изученных у плодовой мушки и других организмов — наверное, муха с ногами на голове была уж очень примечательна. Но со временем история стала еще интересней. Когда около 30 лет назад стали точно картировать мутации, приводящие к трансформациям тела мухи, выяснилось, что ни одна из них не находится внутри самих Hox-генов. Большинство затрагивают широкие геномные области вокруг, которые ничего не кодируют: здесь расположены последовательности, регулирующие активность окружающих генов. Работают эти последовательности не сами по себе, а благодаря связыванию с белками-активаторами или белками-репрессорами. Открылся целый новый уровень в регуляции строения тела — и комплексы гомеозисных генов стали полигоном для изучения некодирующей ДНК, которая в нашем с вами геноме занимает около 98%».

Таких нарушений правильного развития тела у дрозофилы известно немало. Льюис отметил, что они связаны с неправильным формированием целого сегмента — так, словно третий сегмент груди вдруг начинал считать себя вторым и спешно отращивал лишние крылья. Нашелся и ген Ubx, мутации в котором запускали развитие в неверном направлении. А вскоре у Ubx нашлись и родственники — еще два гена, расположенных на той же третьей хромосоме, по соседству с ним. И раз уж они делают один сегмент подобным другому, их так и назвали, только по‑латыни, — гомеозисными (Hox).

К началу 1980-х работы Льюиса и других ученых помогли найти все Hox-гены, мутации в которых делают одни сегменты тела мушки похожими на другие. Их оказалось восемь, и они образуют две тесные группы. Ubx и два других составляют комплекс Bithorax, который активируется в девяти задних сегментах тела дрозофилы. Пять остальных работают в сегментах груди и головы, образуя комплекс Antennapedia — самым знаменательным в этой группе оказался ген Antp: нарушив его работу, можно вырастить ноги на месте головных антенн. Самым интересным оказалось то, что Hox-гены располагаются в геноме строго в том же порядке, что и их сегменты в теле — от головы до кончика брюшка.


Древний фрагмент-гомеобокс обнаруживается даже в генах растений, которые действуют совместно с генами, содержащими аналогичный MADS-бокс. Более того, MADS был найден практически у всех изученных эукариот, включая дрожжи и человека, хотя функции у всех выполняет разные. У растений под их контролем находятся все основные программы развития, так что они могут считаться аналогами Hox-генов животных.

История животных: эволюция

В 1983 году швейцарские биологи нашли у гомеозисных генов дрозофилы неожиданную общую черту: все они имели небольшую, длиной всего около 180 нуклеотидов, но характерную последовательность, «гомеобокс». Этот удивительный фрагмент кодирует белковый домен из примерно 60 аминокислот, который связывается с ДНК и обнаруживается практически у всех животных, от морских звезд и до звезд эстрады. Почти с той же строгостью сохраняется у животных и порядок расположения Hox-генов на хромосоме. Такая консервативность говорит о важной роли, которые выполняют Hox-гены, и об их головокружительной древности.


Небольшие изменения гомеобокса, которые отличают одну группу животных от другой, позволили проследить их возможную историю вплоть до общего предка, который, скорее всего, имел базовую группу из четырех Hox-генов. Кишечнополостные в такой сложности не нуждаются, и они утеряли половину из них. Зато уже у предка билатеральных животных, жившего около 600 млн лет назад, они удвоились, и каждый взял на себя свои, слегка отличные от других функции. Такие усложнения происходили несколько раз, так что если у дрозофилы и прочих насекомых таких генов восемь, то у хордового ланцетника — уже 14. Максимальной численности Hox-гены достигли у позвоночных тетрапод — амфибий, рептилий, птиц и млекопитающих. Этот комплекс генов у нас существует в четырех похожих друг на друга копиях, так что даже с несколькими потерями их общее число превысило 30. В самом деле, хотя сегментированность нашего тела со стороны не так заметна, как у червей или насекомых, она существует, и Hox-гены определяют, будут ли позвонки соединяться с ребрами или вовсе срастутся в копчик. Мутация в Hox10 у мышей заставляет их отращивать ребра даже на животе.


История ящерицы: регенерация

Несколько лет назад петербургские биологи изучили работу Hox-генов кольчатого червя-нереиса в состоянии личинки и взрослого организма. Оказалось, что если у личинки работа их проходит по классической, знакомой еще по мушкам схеме, то у взрослого червя она резко меняет программу. Вместо того чтобы каждый Hox-ген активировался в своем сегменте, они включаются везде и отличаются лишь степенью активности. Предполагается, что это позволяет нереису, потерявшему хвостовые сегменты, благополучно отращивать себе новые.


Эмбриональное развитие человека — невероятно сложный процесс. Поэтому нарушения в работе Hox-генов, как правило, заканчиваются выкидышами еще на ранних стадиях беременности. Однако изредка дети все же появляются на свет — одним из результатов мутаций в Hox-кластерах может быть синдром Гольденхара (гемифациальная микросомия). Это тяжелейшее заболевание, которое связано с множественными пороками развития и, конечно, пока остается неизлечимым. Существуют указания и на возможную роль генов Hox в развитии некоторых видов онкологических болезней — таких как лейкемия или рак молочной железы. Обычно почти молчащие у взрослого человека, некоторые из Hox-генов могут снова проявлять активность в опухолевых клетках, «просыпаясь» под влиянием сигнальных молекул и гормонов роста.

Такая картина — вовсе не новость даже для куда более сложно устроенных позвоночных. Многие рептилии и амфибии, известные способностями регенерировать утраченные хвосты и даже конечности, используют для этого те же гомеозисные гены. Детали данного механизма еще плохо понятны, однако известно, что даже почти одинаковые, дуплицированные Hox-кластеры у саламандр несут разные интроны — некодирующие вставки внутри генов, которые обеспечивают более широкие возможности регуляции их активности. Возможно, такие «усовершенствования» играют важную роль в работе Hox-генов при регенерации конечностей. Вообще, несмотря на небольшие различия, Hox-гены исключительно консервативны и остаются очень похожими даже у таких неблизких групп животных, как насекомые и млекопитающие. Заменив один из них у дрозофилы на гомологичный, взятый у мыши, можно вырастить совершенно нормальную мушку. Тем более сходны они у людей и рептилий.


И если уж ящерицы благодаря им способны, не моргнув глазом, вырастить себе новый хвост вместо откушенного, то поможет ли точная регуляция Hox-генов людям? Исследования в этом направлении уже ведутся, и если когда-нибудь человеку восстановят потерянный палец или даже целую руку, стоит вспомнить, что начало всему положила история мух с ногами на голове.

Принято считать, что дифференцировка основных частей тела у многоклеточного двусторонне симметричного животного происходит в том порядке, в каком располагаются в хромосоме регуляторные Hox -гены. Однако за последнее время генетики выяснили о работе Hox -генов много новых подробностей, не укладывающихся в эту стройную систему.

Прошло уже больше 50 лет с тех пор, как Эдвард Льюис с удивлением рассматривал мутантную плодовую мушку, у которой на голове вместо антенн выросли ноги. Эта странная мутация получилась, когда ген, ответственный за формирование грудных конечностей, включился не в то время и не в том месте. А Эдвард Льюис (вместе с Кристианой Нюссляйн-Волхард и Эриком Вишаусом) получил в 1995 году за исследование этих механизмов эмбриогенеза Нобелевскую премию по физиологии и медицине.

Так было открыто семейство Hox -генов, отвечающих за правильное формирование частей тела у многоклеточных. Работа этих генов казалась чудом: вот оно, решение великой загадки, как из сборища одинаковых эмбриональных клеток в правильном порядке дифференцируются ткани и органы и в результате получается сложный организм. Необходимо только в нужный момент включать правильный Hox -ген.

Регуляторные Hox -гены у дрозофилы располагаются в хромосоме в довольно строгом порядке, приблизительно в том самом, в котором происходит дифференцировка основных частей тела двусторонне симметричного (билатерального) животного. Сначала у раннего эмбриона начинают работать гены, отвечающие за строение органов на голове, затем на груди, затем гены начинают оформлять и хвостовую часть.

Похожие гены были найдены у мыши и у человека. Даже у этих высших существ они выполняют ту же работу: отвечают за порядок эмбрионального развития. Открытие сходных Hox -генов у разных типов животных заставило зоологов и эмбриологов по-новому взглянуть на морфогенез животных и его преобразования в ходе эволюции. Стало ясно, что, изменив один ген или время его включения, можно трансформировать, образовать, удалить или перенести в другое место сразу целый орган, сохранив при этом общий план строения. Помимо этого ученые получили новый мощный инструмент для эволюционных построений: семейство гомологичных (происходящих один от другого) генов, присутствующих у всех многоклеточных животных. Все гипотезы о происхождении билатеральных животных (см. В. В. Малахов «Происхождение билатерально-симметричных животных (Bilateria)», Pdf, 347 Кб) теперь включают и этот пласт информации.

Hox -гены располагаются на одной или нескольких (до четырех) хромосомах, обычно тесными группами (кластерами), внутри которых сохраняется более или менее строгий порядок: «головные» гены впереди, «хвостовые» — сзади. У более примитивных представителей многоклеточных, таких как гребневики (Ctenophora ) и кишечнополостные (Cnidaria ), этих эмбриональных регуляторных генов только четыре, у млекопитающих их уже 48.

Семейство Hox -генов подразделяется на 14 классов. Считается, что эти 14 классов возникали путем дупликации одного или немногих исходных генов, реплики затем мутировали и обретали новые функции. У примитивных кишечнополостных и гребневиков имеется всего 4 класса Hox -генов, у предполагаемого общего предка двустороннесимметричных животных их должно было быть по крайней мере 8, у млекопитающих присутствуют все 14 классов. Принцип работы этих генов одинаков. Все они являются транскрипционными факторами, то есть их функция состоит во «включении» или «выключении» других генов. В результате работы Hox -факторов запускается каскад реакций, приводящий к появлению в клетке нужных белков.

В обзорной статье в Science , посвященной современному видению этой важнейшей группы генов, все эти сведения выпущены, так как считается, что биологи должны были их выучить уже на первом курсе любого биологического вуза. Дерек Лемонз (Derek Lemons) и Уильям Макджиннис (William McGinnis) из Калифорнийского университета в Сан-Диего (США) привели только новейшие данные, касающиеся принципов работы Hox -генов. И эти данные ясно дают понять, что наши ученические представления о семействе Hox -генов сильно устарели. В любой науке это неизбежно происходит по мере накопления информации. За последнее десятилетие расшифрованы ДНК-последовательности Hox -генов у многих групп животных: аннелид , плоских червей , иглокожих , нематод , членистоногих , оболочников , ланцетников , не говоря уже о млекопитающих .

Под тяжестью новых данных обрушилось представление об упорядоченном расположении Hox -генов в хромосомах. Выяснилось, что, например, у иглокожих первые три Hox -гена располагаются прямо перед последним (14-м), а начинается кластер с пятого гена. У нематод и оболочников Hox -гены вообще не образуют кластеров и их порядок в хромосомах не соблюдается вовсе. Это говорит о том, что правильный порядок экспрессии Hox -генов в различных частях эмбриона не соответствует порядку расположения этих генов в хромосоме. Порядок включения Hox -генов зависит, помимо «места под солнцем», еще от каких-то дополнительных факторов.

И вот вопрос: почему у двусторонне-симметричных плоских червей Hox -генов столько же, сколько и у радиально-симметричных кишечнополостных и гребневиков? У кишечнополостных вроде бы понятно: недостающих четырех классов генов еще не было, они образовались только после того, как сложился гипотетический предок двусторонне-симметричных животных. Но у червей-то куда делась половина предковых регуляторных генов, зачем они избавились от них? Или, может быть, этой недостающей половины и не было у предка? Ответа пока нет. Ясно только, что даже при потере большого числа Hox -генов оставшиеся могут организовать эмбриональное развитие сложного билатерального существа.

Зато стали известны детали регуляции самих регуляторных Hox -генов. Между Hox -генами расположены участки ДНК, прежде считавшиеся бессмысленными. В действительности, как оказалось, с них считываются короткие молекулы регуляторных РНК. Некоторые из них усиливают или ослабляют экспрессию самих Hox -генов, некоторые косвенно влияют на работу других транскрипционных факторов. В экспериментах показано, что эти микроРНК могут регулировать как соседний, так и отдаленный Hox -ген.

Так что семейство Hox -генов, главное из главных среди генов-регуляторов, само не имеет полной власти в своем хозяйстве. За ним следят мелкие «выскочки» РНК, способные видоизменить экспрессию гена и тем самым замедлить или ускорить формирование органа. Какова роль этих включений, каков масштаб их действий, откуда они взялись — все эти вопросы пока только заданы. Ответы — это дело будущих открытий.

- … Википедия

- … Википедия

Гомеозисные гены детерминируют процессы роста и дифференцировки. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей. Мутации в гомеозисных генах могут вызвать превращение одной части… … Википедия

- (англ. homeobox) последовательность ДНК, обнаруженная в генах, вовлеченных в регуляцию развития у животных, грибов и растений. Гены, которые содержат гомеобокс, образуют отдельное семейство. Наиболее изученными и наиболее… … Википедия

Кембрийским взрывом называют внезапное (в геологическом смысле) появление в раннекембрийских (ок. 540 млн лет) отложениях окаменелостей представителей многих подразделений животного царства, на фоне отсутствия их окаменелостей или окаменелостей… … Википедия

Млн. лет Период Эра … Википедия

- (англ. evolutionary developmental biology, evo devo) область биологии, которая, сравнивая онтогенез различных организмов, устанавливает родственные связи между ними и вскрывает развитие онтогенетических процессов в ходе эволюции. Она… … Википедия

Факторы транскрипции (транскрипционные факторы) белки, контролирующие перенос информации с молекулы ДНК в структуру мРНК (транскрипцию) путем связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию… … Википедия

Комплекс белка HOXB7 с ДНК. Обозначения … Википедия

- (транскрипционные факторы) белки, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе… … Википедия

Книги

  • Эволюция онтогенеза , Н. Д. Озернюк , Эволюция онтогенеза рассматривается как основная проблема эволюционной биологии развития, поскольку эволюционные преобразования организмов обусловлены изменениями их онтогенеза. Интеграция… Категория:

Hox-гены определяют схему тела животных. Очень важно, чтобы они экспрессировались в правильном количестве, в правильном месте и в правильный момент эмбрионального развития — иначе вся схема тела нарушится. Оказывается, для этих генов существует особый вид регуляции трансляции, позволяющий отделить один вид белков от всех прочих. На их мРНК есть IRES-подобные участки, которые могут запускать трансляцию. При этом кэп-зависимая трансляция для этих белков выключается.

Нох-гены - важный объект для изучения

Инициация трансляции бывает разная

Итак, генетический материал клетки закодирован в ДНК. С ДНК считывается определенный вид РНК, а с РНК - белок. Такой вид РНК называется матричной РНК, у он имеет определенное строение . Это линейная молекула, соответственно, у нее есть 2 конца, которые называются 5′- и 3′-концы. На 5′-конце есть особая структура - . Она необходима для начала синтеза белка на матрице РНК, так как привлекает фабрику белка - .

Так происходит у нас, но не у вирусов. Точнее, не у всех вирусов. У некоторых есть другие структуры в РНК, которые инициируют синтез белка - . Так вот оказывается, что в РНК млекопитающих иногда обнаруживают структуры, похожие на IRES вирусов. При этом кэп тоже присутствует. Получается РНК с двумя сигналами привлечения рибосомы. Это интересное явление часто имеет важный биологический смысл. Например, при стрессе кэп-зависимая инициация трансляции подавлена . Но некоторые белки должны синтезироваться и при стрессе. Вот тогда клетка и использует IRES. А как работает такая смешанная система в нормальных, не шоковых условиях - большая загадка. Клеточные IRES не похожи друг на друга , их роль в развитии организма не ясна. Найти ответ на этот вопрос попытались ученые, изучающие регуляцию Нох-генов .

У мРНК Hox-генов есть IRES вирусов?

Интересно, что в мРНК некоторых Нох-генов предполагают наличие IRES. Причем именно IRES привлекает рибосому и запускает синтез белков. Уже приведены первые экспериментальные доказательства в пользу этой гипотезы . Также ученые открыли еще один специальный регуляторный элемент - translation inhibitory element (TIE), который блокирует кэп-зависимый синтез белка . Появление блокирующего элемента объясняет, почему при наличии и кэп-структуры, и IRES работает только IRES.

Почему IRES лучше, чем кэп?

Важность того участка РНК, где находится предполагаемый IRES, в данном случае подтвердили экспериментально. Показали, что если подвергнуть мутации один из Нох-генов мышей, удалив IRES, то мышь будет развиваться ненормально (см. рисунок 1).

Рисунок 1. Патологии в развитии скелета мышей с делециями в 5′-нетранслируемой области в одном из Hox-генов - Ноха9. Ученые вывели линию мышей, у которых поврежден IRES в одном из Нох-генов. Такие мыши развиваются ненормально. У них нарушается строение скелета: например, не хватает ребер (на недостающие ребра указывают черные стрелочки). Также наблюдаются и другие патологии. Картинка из .

Предполагают, что для очень важных белков, которые закодированы в Нох-генах, IRES лучше, чем кэп. Это может быть связано с тем, что кэп-структура у всех мРНК одинаковая. А IRES разные. То есть к белкам, которые определяют строение тела, нужен индивидуальный подход. Даже начало синтеза является важным этапом регуляции и должно быть уникальным для каждого такого белка.

Словарь терминов:

  • IRES (Internal Ribosome Entry Site) - участок внутренней посадки рибосомы.
  • Hox-гены - семейство генов, которые кодируют транскрипционные факторы, регулирующие формирование органов и тканей в ходе развития организма.
  • Делеция - удаление фрагмента молекулы ДНК.
  • Кэп - 7-метилгуанозин - структура на 5′-конце матричных РНК.
  • Рибосома - комплекс, состоящий из РНК и белков и служащий для синтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).
  • Трансляция - синтез белка на матрице РНК.
  • Хромосома - структура, состоящая из ДНК и белков, находящаяся в ядре эукариотической клетки. Предназначена для хранения, реализации и передачи генетической информации.
  • Эукариоты - живые организмы, клетки которых содержат ядра.

Литература

  1. Alexander, T., Nolte, C. & Krumlauf, R. (2009). Hox genes and segmentation of the hindbrain and axial skeleton . Annu. Rev. Cell Dev. Biol. 25 , 431–456 ;
  2. Гены, от которых вырастают крылья. И ноги. И всё остальное ;
  3. Википедия : «