Что такое фаза в биологии. Деление клетки




  • 1) В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. В цитоплазме клетки имеется небольшое гранулярное тельце, называемое центриолью. В начале профазы центриоль делится, и дочерние центриоли отходят в противоположные концы клетки. От каждой центриоли отходят тонкие нити в виде лучей, образующие звезду; между центриолями возникает веретено, состоящее из ряда протоплазматических нитей, называемых нитями веретена. Эти нити построены из белка, сходного по своим свойствам с сократительными белками мышечных волокон. Они расположены в виде двух конусов, сложенных основание к основанию, так что веретено оказывается узким у концов, или полюсов, около центриолей, и широким в центре, или у экватора. Нити веретена протягиваются от экватора к полюсам; они состоят из более плотной протоплазмы ядра. Веретено представляет собой определенную структуру: при помощи микроманипулятора можно ввести в клетку тонкую иглу и перемещать ею веретено. Веретена, выделенные из делящихся клеток, содержат белок, в основном один вид белка, а также небольшое количество РНК. В то время как центриоли разъединяются, и формируется веретено, хромосомы в ядре сокращаются, становятся короче и толще. Если раньше могло быть и не видно, что они состоят из двух элементов, то теперь это ясно заметно.
  • 2) Прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов эндоплазматического ретикулума. В хромосомах с каждой стороны центромеры в прометафазе образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками. Эти нити отходят от обеих сторон каждой хромосомы, идут в противоположных направлениях и взаимодействуют с нитями биполярного веретена. При этом хромосомы начинают интенсивно двигаться.
  • 3) Метафаза. Хроматиды прикрепляются к фибриллам веретена кинетохорами. Оказавшись связанными с обеими центросомами, хроматиды движутся к экватору веретена до тех пор, пока их центромеры не выстроятся по экватору веретена перпендикулярно его оси. Это позволяет хроматидам беспрепятственно двигаться к соответствующим полюсам. Характерное для метафазы размещение хромосом очень важно для сегрегации хромосом, т.е. расхождения сестринских хроматид. Если отдельная хромосома «замешкается» в своем движении к экватору веретена, задерживается обычно и начало анафазы. Метафаза завершается разделением сестринских хроматид.
  • 4) Анафаза продолжается обычно всего несколько минут. Анафаза начинается внезапным расщеплением каждой хромосомы, которое обусловлено разделением сестринских хроматид в точке их соединения в центромере.

Это расщепление, разделяющее кинетохоры, не зависит от других событий митоза и происходит даже в хромосомах, не прикрепленных к митотическому веретену. Оно позволяет полярным силам веретена, действующим на метафазную пластинку, начать перемещение каждой хроматиды к соответствующим полюсам веретена со скоростью порядка 1 мкм/мин. Если бы не было нитей веретена, то хромосомы расталкивались бы во все стороны, но благодаря наличию этих нитей один полный набор дочерних хромосом собирается у одного полюса, а другой -- у другого. Во время движения к полюсам хромосомы обычно принимают V-образную форму, причем вершина их обращена к полюсу. Центромера располагается у вершины, и, сила, заставляющая хромосому двигаться к полюсу, приложена к центромере. Хромосомы, утратившие центромеру во время митоза совсем не движутся

5) Телофаза начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды распределяются между дочерними клетками более или менее равномерно. На этом завершается деление ядра, называемое также кариокинезом; затем происходит деление тела клетки, или цитокинез.

Таблица 2. Фазы митоза

В большинстве случаев весь процесс митоза занимает от 1 до 2 ч. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму; она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки. Материал клеточной пластинки вырабатывается эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточной пластинки цитоплазматическую мембрану, и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки.

Частота митозов в разных тканях и у разных видов резко различна. Например, в красном костном мозге человека, где в каждую секунду образуется 10 000 000 эритроцитов, в каждую секунду должно происходить 10 000 000 митозов.

Наследственность как всеобщее свойство живых организмов тесно связана с другим важнейшим свойством живого - размножением . Благодаря размножению осуществляется преемственность между родительскими особями и их потомством. В основе размножения лежит процесс деления клеток.

Хромосомы: индивидуальность, парность, число

Во время деления клетки хорошо заметны хромосомы. При изучении хромосом разных видов живых организмов было обнаружено, что их набор строго индивидуален. Это касается числа, формы, черт строения и величины хромосом. Набор хромосом в клетках тела, характерный для данного вида растений, животных, называется кариотипом.

В любом многоклеточном организме существует два вида клеток - соматические (клетки тела) и половые клетки, или гаметы. В половых клетках число хромосом в 2 раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами - такой набор называется диплоидным и обозначается 2/1- Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом находится в одинарном числе. Такой набор называется гаплоидным и обозначается n.

Митоз. Подготовка клетки к делению

Наиболее распространенным способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий, или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению - в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия. Удвоенная хромосома состоит из двух половинок - хроматид. Каждая из хроматид содержит одну молекулу ДНК- В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10-20 ч. Затем наступает процесс деления клетки - митоз.

Фазы митоза

Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза, телофаза.

В профазе хорошо видны ценгриоли - органоиды, играющие определенную роль в делении дочерних хромосом. Центриолй делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку - центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

В анафазе дочерние хромосомы расходятся к разным полюсам клетки.

В последней стадии - телофазе - хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 ч.

В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Митоз - это способ деления эукариотических клеток, в результате которого образуются 2 дочерние клетки, которые имеют такой же набор хромосом, и материнская клетка.

В течение митоза происходит одно деление клетки, который состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Набор хромосом в клетках перед разделением и после разделения диплоидный. Состояние наследственной информации после разделения неизменной. Митоз в растительных клеток был открыт в 1874 году И. Д. Чистяковым, а в животных клеток митотическое деление открыли несколько позже - в 1878 году - В. Флеминг и Π. И. Перемежко.

фазы митоза

Профаза - фаза спирализации двохроматидних хромосом. В профазе происходят следующие процессы:

спирализация (конденсация ), то есть укорочение и утолщение двохроматидних хромосом;

■ различия центриолей к полюсам;

■ уменьшение и исчезновение ядрышки (ядрышек)

■ распад на фрагменты ядерной оболочки;

■ формирование веретена деления - системы микротрубочек в клетке, которая делится. Обеспечивает расхождения хромосом в митозе и мейозе. В составе веретена деления содержится два типа микротрубок: те, которые отходят от полюсов (полюсные) и от центромер хромосом (хромосомные). Расхождения хромосом происходит в результате сокращения хромосомных микротрубок. Веретено деления вместе с центрами сбора микротрубочек образует митотический аппарат.

Метафаза - фаза расположения двохроматидних хромосом на экваторе клетки. В метафазе хромосомы располагаются на экваторе

I-III - профаза; IV - метафаза; V-VI - анафаза; VII-VIII - телофаза.

клетки на равном расстоянии от полюсов ядра в одной плоскости, образуя так называемую метафазную пластинку. Важно отметить, что они остаются в таком положении в течение достаточно длительного времени. В связи с этим метафаза является удобной для подсчета количества хромосом в клетке.

Анафаза - фаза различия однохроматидних хромосом к полюсам клеток. В анафазе хромосомы разделяются на отдельные хроматиды и расходятся к полюсам клетки.

Телофаза - фаза деспирализации однохроматидних хромосом. ее называют еще "профаза наоборот", поскольку происходят процессы, которые являются противоположными процессов профазы: деспирализация однохроматидних хромосом, расположение центриолей у ядра, формирование ядрышки (ядрышек), образование ядерной оболочки и разрушения веретена деления.

Биологическое значение митоза: 1) обеспечивает точное распределение наследственного материала между двумя дочерними клетками; 2) обеспечивает постоянство кариотипа при бесполом размножении; 3) лежит в основе бесполого размножения, регенерации, роста.

БИОЛОГИЯ + Колхицин - алкалоид, который имеет сильную антимиоттичну действие. Это соединение подавляет образование нитей митотического веретена деления, препятствуя его сбору с субъединиц белка тубулина. Колхицин применяют в биологии для изучения кариотипа и для клинической диагностики хромосомных аномалий, в селекции для получения полиплоидных форы, в медицине для уменьшения боли при подагре и др. Получают колхицин с клубнелуковиц безвременника осеннего (Colchicum autumnale L. ) , который относится к семейству Мелантия порядке лилиецветные. Безвременник очень ядовитое, но одновременно и важное лекарственное растение и интересная декоративное растение.

Митоз, его фазы, биологическое значение

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

Характеристика фаз митоза

К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.

Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено - одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

Прометафаза

Прометафаза

Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

В клетках млекопитающих прометафаза протекает, как правило, в течение 10-20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона - около 30 минут.

Метафаза

Метафаза

В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи - к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.

К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Анафаза - самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5-2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.

Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.

Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.

Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5-2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

Телофаза

Телофаза

Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки - цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.

Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.

Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру - раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.

С идентичным генетическим материалом.

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1 : период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а дублируются, но находятся в форме хроматина. В две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Фазы митоза:

Препрофаза (в клетках растений)

Препрофаза является дополнительной фазой во время митоза в , которая не встречается у других эукариот, таких как животные или грибы. Она предшествует профазе и характеризуется двумя различными событиями.

Изменения, которые происходят в препрофазе:

  • Образование полосы препрофазы - плотного микротрубочного кольца под .
  • Начало зарождения микротрубочек в ядерной оболочке.

Профаза

В профазе конденсируется в дискретные хромосомы. Ядерная оболочка ломается, а веретено деления образуются на противоположных полюсах клетки. Профаза (по сравнению с интерфазой) является первым истинным шагом митотического процесса.

Изменения, которые происходят в профазе:

  • Хроматиновые волокна превращаются в хромосомы, имеющие по две , соединенные в центромер. Волокна деления, состоящие из микротрубочек и белков, образуется в .
  • В клетках животных волокна деления первоначально появляется как структуры, называемые астерами, которые окружают каждую пару центриолей.
  • Две пары центриолей (сформированных из репликации одной пары в интерфазе) отходят друг от друга к противоположным полюсам клетки из-за удлинения микротрубочек, образующихся между ними.

Прометафаза

Прометафаза - фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.

Изменения, которые происходят в прометафазе:

  • Ядерная оболочка распадается.
  • Полярные волокна, которые представляют собой микротрубочки, составляющие волокна веретена, перемещаются от каждого полюса до экватора клетки.
  • Кинетохоры, которые являются специализированными областями в центромерах хромосом, прикрепляются к типу микротрубочек, называемых кинетохорными нитями.
  • Нити кинетохора «взаимодействуют» с веретеном деления.
  • Хромосомы начинают мигрировать к центру клетки.

Метафаза

В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).

Изменения, которые происходят в метафазе:

  • Ядерная мембрана полностью исчезает.
  • В клетках животных две пары расходятся в противоположных направлениях к полюсам клетки.
  • Полярные волокна (микротрубочки, составляющие волокна веретена) продолжают распространяться от полюсов к центру. Хромосомы перемещаются случайным образом, пока не присоединяют (при помощи своих кинетохор) к полярным волокнам с обеих сторон центромеров.
  • Хромосомы выравниваются на метафазной пластине под прямым углом к ​​полюсам веретена.
  • Хромосомы удерживаются на метафазной пластине равными силами полярных волокон, которые нажимают на их центромеры.

Анафаза

В анафазе парные хромосомы () отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.

Изменения, которые происходят в анафазе:

  • Парные в каждой отдельной хромосоме начинают раздвигаться.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается «полной» хромосомой. Они называются дочерними хромосомами.
  • При помощи веретена деления, перемещаются к полюсам на противоположные концы клетки.
  • Дочерние хромосомы сначала мигрируют в центромер, а кинетохорные нити становятся короче, чем хромосомы вблизи полюсов.
  • При подготовке к телофазе два полюса клетки также отдаляются друг от друга во время анафазы. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
  • Начинается процесс цитокинеза (разделение цитоплазмы исходной клетки), который завершается после телофазы.

Телофаза

В телофазе хромосомы достигают ядер новых дочерних клеток.

Изменения, которые происходят в телофазе:

  • Полярные волокна продолжают удлиняться.
  • Ядра начинают формироваться на противоположных полюсах.
  • Ядерные оболочки новых ядер образовываются из остатков ядерной оболочки материнской клетки и кусочков эндомембранной системы.
  • Появляются ядрышка.
  • Разматываются хроматиновые волокна хромосом.
  • После этих изменений телофаза и митоз в основном завершены, а генетическое содержание одной клетки поделено на две части.

Цитокинез

Цитокинез - это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.

Дочерние клетки

В конце митоза и цитокинеза хромосомы распределены поровну между двумя дочерними клетками. Эти клетки являются идентичными , причем каждая из которых содержит полный набор хромосом.

Клетки, продуцируемые через митоз, отличаются от клеток, продуцируемых через . В мейозе образуются четыре дочерние клетки. Эти клетки представляют собой , содержащие половину числа хромосом от исходной клетки. подвергаются мейозу. При делении половых клеток во время оплодотворения, гаплоидные клетки становятся диплоидной клеткой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .