Суть дыхания — механика, биохимические процессы. Механика дыхания. Аэродинамическое, эластическое сопротивление Причины эластического сопротивления легких




Аэродинамическое сопротивление возникает вследствие трения поступающего в легкие газа о стенки искусственных и естественных дыхательных путей. Ламинарный поток газа, когда слои его параллельны стенкам проводящей трубки, описан уравнением Пуазейля: F = Pрr 4 /8зL где F - поток, Р - давление, r - радиус трубки, з - вязкость газа и L - длина трубки. Исходя из уравнения видно, что поток увеличивается, при увеличении давления и, особенно, радиуса трубки, и уменьшается при увеличении вязкости газа и длины трубки. Аэродинамическое сопротивление любой трубки принято определять величиной давления необходимого для проведения через нее единицы объема газа за единицу времени (в медицине см. Н2О/литр в секунду). Преобразовав уравнение Пуазейля, получим: Р = FЧ8зЧL/рr 4 или Р = F8з/рЧL/r 4 . Если пропускать одинаковый газ с одинаковой скоростью через разные трубки, то величина F8з/р будет постоянной, а уравнение будет выглядеть Р = constЧL/r 4 , то есть аэродинамическое сопротивление прямо пропорционально длине трубки и обратно пропорционально ее радиусу в четвертой степени. Чтобы наглядно представить смысл этого уравнения решим задачу: У годовалого ребенка диаметр подсвязочного пространства = 4мм, после экстубации развился ларингит (слизистая отекла на 1мм, то есть диаметр уменьшился до 2мм), насколько увеличилось аэродинамическое сопротивление и работа дыхания? При Ш = 4мм, r = 2мм (r 4 = 16), при Ш = 2мм, r = 1 (r 4 =1), поскольку длина подсвязочного пространства, газ (воздух) и поток (чтобы обеспечить МОД) остались прежними, то уравнения будут выглядеть следующим образом: до развития отека Р = constЧL/16, а после Р = constЧL/1. Ответ: аэродинамическое сопротивление и работа дыхания увеличились в 16 раз. Однако эти расчеты справедливы, только если поток газа остается ламинарным.

Турбулентным поток становится, когда в слоях газа, прилежащих к стенке проводящей трубки, появляются вихревые вращательные движения. Условиями возникновения турбулентности являются высокие скорости потока, вязкость газа и наличие неровностей на стенках проводящей трубки. В клинических условиях это капли конденсата на стенках интубационной трубки, мокрота, кровь или меконий на стенках бронхов, бифуркации трахеи и бронхов при высокой скорости инспираторного потока. Турбулентный поток в дыхательных путях экспоненциально повышает Raw и снижает давление газа в зонах турбулентности, то есть может снижать доставку газа в альвеолы при коротком времени вдоха. На величину Raw влияют вязкость и влажность дыхательного газа. Так наименьшей вязкостью обладает сухая смесь кислорода с гелием, которая применялась в космической медицине, а также использовалась в экспериментальной медицине для купирования астматического статуса.

При легочной патологии Raw увеличивается при снижении общего количества функционирующих дыхательных путей, при бронхоконстрикции и отеке слизистой бронхов, что снижает площадь их общего сечения. Наличие же в дыхательных путях воспалительного секрета, крови и, особенно, мекония не только снижают площадь их общего сечения, но и способствуют возникновению турбулентности. Чем меньше размеры тела ребенка, тем меньше диаметр дыхательных путей, а следовательно и Raw . Из за малого калибра дыхательных путей Raw при легочной патологии у младенцев повышается гораздо сильнее, чем у взрослых.

В фазу вдоха интраторакальные дыхательные пути увеличиваются в диаметре, а в фазу выдоха уменьшаются, поэтому Raw при вдохе < Raw при выдохе.

Большая часть Raw (около 80%) приходится на первые 5 генераций трахеобронхиального дерева, то есть на зону высокоскоростных потоков, где возможно развитие турбулентности. Более дистальные дыхательные пути имеют гораздо большую площадь общего сечения (так общее сечение терминальных бронхиол в 30-50 раз больше сечения трахеи), то есть являются зоной низкоскоростных ламинарных потоков.

При проведении ИВЛ Raw = ДP/литр в секунду, где Дp = PIP - PEEP. В англоязычной литературе эта разница между PIP и РЕЕР часто именуется drive pressure - ведущее давление, так как именно оно определяет величину дыхательного объема..

Сравнительные величины Raw в см Н2О/литр в сек.

Здоровые взрослые 1 - 2

Годовалые дети 12 -16

Здоровые новорожденные 20 - 40

Стандартная ИТ Ш 3,5мм 50

Стандартная ИТ Ш 2,5мм 150

Длинные ИТ малого диаметра, имеющие резкие изгибы, но особенно, при наличии на внутренних стенках капель конденсата или мокроты, могут весьма значительно увеличивать Raw , а следовательно и работу дыхания при проведении СРАР через ИТ (по Грегори) или IMV (SIMV) c низкой частотой дыхательных циклов. Это может вызвать усталость дыхательной мускулатуры и падение респираторного драйва.

Получить представление о состоянии Raw у пациента можно, оценивая конфигурацию петли V/F (объем / поток) на дисплее дыхательного монитора и цифровые значения инспираторного и экспираторного потоков, а также по характеру кривой T/F (время / поток). Конфигурации петель V/F и варианты конфигурации графиков потока будут рассматриваться в разделе параметры вентиляции. Однако, ценность этой информации у детей раннего возраста ограничена, а петля V/F используется, в основном, для оценки степени обструкции дыхательных путей. Более информативно отслеживать динамику изменения конфигурации этой петли. Так, к примеру, можно оценить эффект от применения бронхолитиков при обструктивном синдроме. Современные дыхательные мониторы определяют Raw каждого дыхательного цикла с выводом цифровой информации на дисплей.

В положении спокойного выдоха, при полном расслаблении, устанавливается равновесие двух противоположно направленных сил тяги: эластической тяги легких, эластической тяги грудной клетки. Их алгебраическая сумма равна нулю.

Объем воздуха, находящегося при этом в легких, именуется функциональной остаточной емкостью. Давление в альвеолах нулевое, т. е. атмосферное. Движение воздуха по бронхам прекращается. Направленность эластических сил проявляется после вскрытия плевральной полости: легкое сжимается, грудная клетка расширяется. Местом «сцепления» этих сил являются париетальный и висцеральный листки плевры. Прочность этого сцепления огромна - она может выдержать давление до 90 мм рт. ст. Для того чтобы началось дыхание (перемещение воздуха по бронхиальному дереву), необходимо нарушить равновесие эластических сил, что достигается путем приложения дополнительной силы - силы дыхательной мускулатуры (при самостоятельном дыхании) или силы аппарата (при принудительном дыхании). В последнем случае место приложения силы может быть двояким:

  • снаружи (сжимание или расширение грудной клетки, например дыхание в респираторе)
  • изнутри (повышение или снижение альвеолярного давления, например управляемое дыхание наркозным аппаратом).

Для обеспечения необходимого объема альвеолярной вентиляции требуется затратить какую-то энергию на преодоление сил, противодействующих дыханию. Это противодействие складывается главным образом из:

  • эластического (преимущественно сопротивления легких)
  • неэластического (в основном сопротивление бронхов воздушному потоку) сопротивления.

Сопротивление брюшной стенки, суставных поверхностей скелета грудной клетки и сопротивление тканей на растяжение незначительно и потому не учитывается. Эластическое сопротивление грудной клетки в обычных условиях является способствующим фактором и потому тоже не оценивается в данном сообщении.

Эластическое сопротивление

Эластика грудной клетки связана с характерным строением и расположением ребер, грудины и позвоночника. Хрящевая фиксация с грудиной, пластинчатое строение и форма полукруга ребер придают грудной клетке упругость или эластичность. Эластическая тяга груди направлена на расширение объема грудной полости. Упругие свойства легочной ткани связаны с наличием в ней специальных эластических волокон, стремящихся сжать легочную ткань.

Суть дыхания следующая — на вдохе мышечные усилия растягивают грудную клетку, а вместе с ней и легочную ткань. Выдох осуществляется под влиянием эластической тяги легочной ткани и смещения органов брюшной полости, объем грудной клетки возрастает под действием эластической тяги груди. При этом функциональная остаточная емкость увеличивается, а альвеолярный газообмен ухудшается.

Эластические свойства легких определяются изменением альвеолярного давления на изменение наполнения легочной ткани на единицу объема. Эластичность легких выражается в сантиметрах водяного столба на 1 л. У здорового человека эластичность легких составляет 0,2 л/см водяного столба. Это означает, что при изменении наполнения легких на 1 л внутрилегочное давление изменяется на 0,2 см водяного столба. На вдохе это давление будет возрастать, а на выдохе - снижаться.

Сопротивление эластической тяги легких прямо пропорционально наполнению легких и не зависит от скорости потока воздуха.

Работа по преодолению эластической тяги возрастает в виде квадрата прироста объема и потому она выше при глубоком дыхании и ниже при поверхностном.

На практике наибольшее распространение получил показатель растяжимости легких (комплайенс).

Растяжимость легочной ткани является величиной, обратной понятию эластичности, и определяется изменением воздухонаполнения легких под влиянием изменения альвеолярного давления на единицу давления. У здоровых людей эта величина составляет примерно 0,16 л/см водяного столба с размахом от 0,11 до 0,33 л/см водяного столба.

Растяжимость ткани легкого в различных отделах неодинакова. Так, корень легкого имеет незначительную растяжимость. В зоне разветвления бронхов, где уже имеется паренхиматозная ткань, растяжимость оказывается средней, а сама легочная паренхима (по периферии легкого) обладает наибольшей растяжимостью. Ткань в нижних отделах обладает большей растяжимостью, чем в области верхушек. Это положение удачно сочетается с тем фактом, что нижние отделы груди наиболее значительно меняют свой объем при дыхании.

Показатель растяжимости легочной ткани подвержен большим изменениям в условиях патологии. Растяжимость уменьшается, если легочная ткань становится более плотной, например:

  • при легочном застое вследствие сердечно-сосудистой недостаточности
  • при фиброзе легких.

Это означает, что на ту же величину сдвига давления происходит меньшее растяжение легочной ткани, т. е. меньшее изменение объема. Растяжимость легких иногда снижается до 0,7-0,19 л/см водяного столба. Тогда у таких больных наблюдается значительная одышка даже в покое. Снижение растяжимости легочной ткани наблюдается также под воздействием рентгенотерапии, из-за развивающегося склеротического процесса в легочной ткани. Снижение растяжимости в этом случае является ранним и выраженным признаком пневмосклероза.

В случаях развития атрофических процессов в легочной ткани (например, при эмфиземе легких), сопровождающихся утратой эластичности, растяжимость будет повышена и может достигнуть 0,78-2,52 л/см водяного столба.

Бронхиальное сопротивление

Величина бронхиального сопротивления зависит от:

  • скорости потока воздуха по бронхиальному дереву;
  • анатомического состояния бронхов;
  • характера потока воздуха (ламинарного или турбулентного).

При ламинарном потоке сопротивление зависит от вязкости, а при турбулентном - от плотности газа. Турбулентные потоки обычно развиваются в местах ветвления бронхов и на местах анатомических изменений стенок воздуховодов. В норме же на преодоление бронхиального сопротивления расходуется около 30-35% всей работы, но при эмфиземе и бронхитах этот расход резко увеличивается и достигает 60-70% всей затраченной работы.

Сопротивление воздушному потоку со стороны бронхиального дерева у здоровых людей остается при обычном объеме дыхания постоянным и составляет в среднем 1,7 см л/сек Н2О при потоке воздушной струи 0,5 л/сек. Согласно закону Пуазейля, сопротивление будет меняться прямо пропорционально квадрату скорости потока и IV степени радиуса просвета воздухоносной трубки и обратно пропорционально длине этой трубки. Таким образом, при анестезировании больных с нарушенной бронхиальной проходимостью (бронхит, бронхиальная астма, эмфизема) для обеспечения наиболее полного выдоха дыхание должно быть редким, чтобы хватило времени для полноценного выдоха, или следует применять отрицательное давление на выдохе в целях обеспечения надежного вымывания углекислоты из альвеол.

Повышенное сопротивление потоку газовой смеси будет также наблюдаться при интубации трубкой небольшого диаметра (по отношению к просвету трахеи). Несоответствие размера трубки на два номера (по английской номенклатуре) приведет к повышению сопротивления примерно в 7 раз. Сопротивление возрастает с увеличением длины трубки. Поэтому наращивание ее (иногда наблюдаемое при на лице) должно производиться со строгим учетом возрастающего при этом сопротивления потоку газов и увеличения объема анестезиологического вредного пространства.

Во всех сомнительных случаях вопрос должен решаться в пользу укорочения трубки и увеличения ее диаметра.

Работа дыхания

Работа дыхания определяется энергией, затраченной на преодоление эластических и неэластических сил, противодействующих вентиляции, т. е. той энергии, которая заставляет дыхательный аппарат совершать дыхательные экскурсии. Установлено, что при спокойном дыхании главные энергетические затраты уходят на преодоление сопротивления со стороны легочной ткани и совсем небольшая энергия расходуется на преодоление сопротивлений со стороны грудной клетки и брюшной стенки.

На долю эластического сопротивления легких приходится около 65%, а на долю сопротивления бронхов и тканей -35%.

Работа дыхания, выраженная в миллилитрах кислорода на 1 л вентиляции, для здорового человека составляет 0,5 л/мин или 2,5 мл при МОД, равном 5000 мл.

У больных с пониженной растяжимостью легочной ткани (жесткое легкое) и высоким бронхиальным сопротивлением работа по обеспечению вентиляции может оказаться очень высокой. При этом нередко выдох становится активным. Такого рода изменения аппарата дыхания имеют не только теоретическое значение, например при обезболивании больных с эмфиземой легких, у которых имеется повышенная растяжимость легочной ткани (атрофия легких) и увеличенное бронхиальное сопротивление наряду с фиксированной грудной клеткой. Поэтому в обычных условиях выдох становится активным и усиливается за счет сокращения мышц живота. Если больному будет дан глубокий наркоз или будет произведена , то этот компенсаторный механизм будет нарушен. Снижение глубины вдоха приведет к опасной задержке углекислоты. Поэтому у больных с эмфиземой легких при лапаротомиях вентиляция должна быть принудительной. В послеоперационном периоде эти больные должны находиться под особенно строгим надзором и в случае необходимости их переводят на принудительное дыхание через трахеотомическую трубку с манжеткой (с помощью различного рода спиропульсаторов). Поскольку время выдоха у этих больных затянуто (из-за снижения эластичности и затруднения воздушного потока по бронхиальному дереву), при проведении принудительного дыхания для обеспечения хорошей вентиляции альвеол желательно создать отрицательное давление аа выдохе. Однако отрицательное давление не должно быть чрезмерным, иначе оно может вызвать спадение стенок бронхов и блокирование значительного объема газа в альвеолах. В этом случае результат будет обратным - альвеолярная вентиляция снизится.

Своеобразные изменения наблюдаются при обезболивании больных с сердечным застоем легких, у которых показатель растяжимости, определенный до наркоза, оказывается сниженным (жесткое легкое). Благодаря проведению управляемой вентиляции легкое у них становится более «мягким» оттого, что часть застойной крови отжимается в большой круг кровообращения. Растяжимость легких увеличивается. И тогда при том же давлении легкие расправляются на больший объем. Это обстоятельство следует иметь в виду в случаях ведения наркоза с помощью спиронульсатора, так как с увеличением растяжимости возрастает объем легочной вентиляции, что в ряде случаев может отразиться на глубине наркоза и гемеостазе кислотно-щелочного баланса.

Вентиляция и механика дыхания

Соотношение между глубиной вдоха и частотой дыхания определяется механическими свойствами аппарата дыхания. Эти соотношения устанавливаются так, чтобы работа, затрачиваемая на обеспечение требуемой альвеолярной вентиляции, была минимальной.

При пониженной растяжимости легких (жесткое легкое) поверхностное и частое дыхание будет наиболее экономичным (так как скорость потока воздуха не вызывает большого сопротивления), а при повышенном бронхиальном сопротивлении наименьшее количество энергии расходуется при медленных потоках воздуха (редкое и глубокое дыхание). Этим и объясняется, почему больные с пониженным показателем растяжимости легочной ткани дышат часто и поверхностно, а больные с повышенным бронхиальным сопротивлением - редко и глубоко.

Аналогичная взаимозависимость наблюдается у здорового человека. Глубокое дыхание бывает редким, а поверхностное - частым. Эти взаимоотношения устанавливаются под контролем центральной нервной системы.

Рефлекторная иннервация определяет оптимальные соотношения между частотой дыхания, глубиной вдоха и скоростью потока дыхательного воздуха при формировании нужного уровня альвеолярной вентиляции, при которых требуемая альвеолярная вентиляция обеспечивается при возможно минимальной работе дыхания. Так, у больных с ригидными легкими (растяжимость снижена) наилучшее соотношение между частотой и глубиной вдоха наблюдается при частом дыхании (энергия экономится за счет меньшего растягивания легочной ткани). Наоборот, у больных с повышенным сопротивлением со стороны бронхиального дерева (бронхиальная астма) лучшее соотношение наблюдается при глубоком редком дыхании. Наилучшее состояние у здоровых людей в условиях покоя наблюдается при частоте дыхания 15 в минуту и глубине 500 мл. Работа дыхания будет составлять около 0,1-0,6 гм/мин.

Статью подготовил и отредактировал: врач-хирург

(1 оценок, среднее: 2,00 из 5)

Разграничение эластической и неэластической фракции работы дыхания позволяет дифференцировать преобладание обструктивных и рестриктивных нарушений вентиляции лёгких. В нормальных условиях эластическая фракция работы дыхания составляет 50-60% от общей работы дыхания.

Разграничение эластической и неэластической фракции работы дыхания позволяет дифференцировать преобладание обструктивных и рестриктивных нарушений вентиляции лёгких. В нормальных условиях эластическая фракция работы дыхания составляет 50-60% от общей работы дыхания. Если увеличение работы дыхания произошло за счет преимущественного увеличения неэластической фракции работы дыхания, то можно говорить об обструктивных нарушениях механики дыхания. Дыхательная петля при этом весьма широкая, а экспираторная часть ее выходит далеко за пределы эластического треугольника, свидетельствуя о повышенной работе дыхательной мускулатуры на выдохе.

При рестриктивных нарушениях механики дыхания процент эластической фракции работы дыхания увеличивается. Происходит как бы обучение легких работе при измененной пневмо-динамике. Общая работа дыхания увеличивается незначительно.

Сложной и малоразработанной является проблема дифференцирования отдельных видов механического сопротивления лёгких при исследовании биомеханики дыхания. Неэластическое сопротивление лёгких складывается из 3 основных видов сопротивления: 1) аэродинамического сопротивления; 2) тканевого трения; 3) инерции газа и тканей. Сейчас в классической физиологии дыхания неэластическое сопротивление лёгких принято рассматривать как бронхиальное сопротивление. Другими видами сопротивления обычно пренебрегают как малыми величинами. Такое упрощение нельзя считать правомерным, поскольку каждый из видов неэластического сопротивления, вероятно, может изменяться, например, увеличиваться, оказывая влияние на суммарную величину неэластического сопротивления лёгких. Не исключено, что в суммарном неэластическом сопротивлении лёгких скрываются еще неизвестные для науки виды сопротивления, например, в биологической механической системе возможно явление тиксотропии и антитиксотропии. Тем не менее на данном уровне развития учения о механике дыхания в определенной степени можно дифференцировать бронхиальное и тканевое неэластическое сопротивление.
Определение бронхиального сопротивления по альвеолярному давлению, рассчитанному из неэластического компонента транспульмонального давления, не имеет принципиального отличия от определения неэластического сопротивления по дыхательной петле, так как в расчет здесь берется разделение эластического и неэластического компонента транспульмонального давления с помощью эластической оси лёгких. Поэтому сопротивление, рассчитанное таким образом, правильнее называть общим неэластическим сопротивлением

Незначительное сопротивление дыханию при применении противогаза не оказывает отрицательного физиологического действия: оно вызывает замедление ритма и увеличение глубины дыхания. Увеличение сопротивления И длительное преодоление сопротивления дыханию вызывает утомление дыхательных мышц, которое особенно заметно на мышцах, обеспечивающих выдыхание, поскольку при нормальном дыхании эти мышцы вообще мало активны.

При значительном сопротивлении легкие не успевают засасывать и выдыхать достаточное количество воздуха, чтобы обеспечить нормальный газообмен, в частности, достаточное удаление углекислого газа. Накопление в крови углекислого газа вызывает усиленное раздражение дыхательного центра, который реагирует на раздражение ускорением дыхания. Из-за этого, с одной стороны, и из-за сопротивления, которое стремится, наоборот, замедлить дыхание, - с другой, оно становится поверхностным, в результате чего наступает дальнейшее ухудшение вентиляции легких и усиление раздражения дыхательного центра.

Автоматическое регулирование ритма дыхания происходит благодаря блуждающему нерву, разветвления которого - эфферентные или чувствительные волокна - раздражаются при расширении грудной клетки и передают дыхательному центру импульс, прекращающий вдох и вызывающий расслабление мышц. Усиленное раздражение дыхательного центра вызывает быстрое ого утомление, вследствие чего даже слабые начальные импульсы со стороны блуждающего нерва вызывают реакцию дыхательного центра, и акт вдоха, не доведенный до конца, сменяется актом выдоха. Если человеку при этом приходится выполнять мускульную работу, требующую усиленной вентиляции легких, то отрицательное влияние сопротивления усиливается и может повлечь за собой явления аноксемии и асфиксии.

Сопротивление дыханию на выдохе переносится труднее, чем сопротивление на вдохе. При продолжительной работе (3-4 часа),соответствующей потреблению кислорода до 2 л/мину максимальным сопротивлением на выдохе, измеряемым в момент наибольшей скорости движения воздуха, которое не вызывает еще расстройства дыхания, является сопротивление в 60-80 мм вод. ст. на скоростных пиках. Сопротивление в 80-100 мм при тех же условиях уже нежелательно, хотя и допустимо, если это сопротивление включается не постоянно, а периодически, т. е. если периоды работы чередуются с периодами отдыха. Сопротивление свыше 200 мм вод. ст. уже переносится с большим трудом даже в течение нескольких минут. Одним из движущих факторов в развитии респираторостроения является стремление возможно больше снизить сопротивление системы противогаза дыханию.

Сопротивление противогазов часто определяется путем пропускания через них потока воздуха с постоянной скоростью, соответствующей средней объемной скорости вентиляции легких. Получаемые при этом величины сопротивления значительно меньше величин избыточного давления и разрежения, получающихся в действительности во время дыхания в противогазе. Это происходит по следующим причинам: количество воздуха, которое проходит через легкие в единицу времени, попеременно то вдыхается, то выдыхается, вследствие чего объемная скорость воздуха, протекающего через дыхательные пути, увеличивается вдвое; вдохи и выдохи протекают не с равномерной скоростью, а с возрастающей и затухающей скоростями, благодаря чему и сопротивление на скоростных пиках вдоха достигает максимумов, значительно превосходящих средние величины; фаза вдоха отделяется от фазы выдоха небольшой паузой, что также увеличивает моментные скорости движения воздуха в дыхательных путях.

На рис. 51 показаи график изменения сопротивления противогаза дыханию при объеме вентиляции 50 л/мин. Сплошной кривой показано изменение моментной скорости вдоха (в л/сек), штриховой - соответствующие: изменения сопротивления (в мм вод. ст.), штриховая прямая изображает постоянную среднюю скорость воздуха 0,8 л/сек, соответствующую легочной вентиляции 50 л/мин, а пунктирная прямая - сопротивление противогаза при испытании на постоянном потоке. Ввиду того что при вентиляции 50 л/мин пауза между фазами вдоха и выдоха весьма мала, она на графике не показана.

Рис. 51. График сопротивления противогаза в зависимости от режима и скорости воздушного потока

Из графика видно, что скорость движения воздуха зависит от длительности фазы дыхания; поскольку длительность вдоха (нижняя половина графика) меньше длительности выдоха, скорость воздуха на вдохе больше.

Зависимость сопротивления движению воздуха по круглым воздуховодам (суммарное сопротивление трения и местных сопротивлений) от скорости может быть выражена формулой:

(56)

где Н-сопротивление в мм вод. ст.(или кг/м2); β - коэффициент сопротивления, зависящий от числа Реннольдса, т. е. от отношения произведения скорости воздуха на диаметр воздуховода к кинематической вязкости воздуха и от эмпирической константы, определяемой для каждого типа воздуховода и местных сопротивлений; γ - удельный вес воздуха, кг/м3; g - ускорение силы тяжести, 9,81 м/сек2; l - длина воздуховода, м; Р и S - соответственно его периметр и сечение, м и м2; υ - линейная скорость течения воздуха, м/сек.

Поскольку P/S=4/d

(57)

Вводя понятие удельного сопротивления h=2βγ/g, получаем для случая турбулентного (вихревого) движения воздуха через воздухопроводы противогаза

Исследование сопротивления фильтрующих коробок, снаряженных твердыми дроблеными или гранулированными поглотителями, показало, что оно с достаточным приближением может быть подсчитано по формуле, характеризующей ламинарное (слоистое) течение воздуха в малых каналах между зернами фильтрующей среды:

где υ 1 - удельная объемная скорость воздуха в л/мин·см2, которая легко может быть приведена, для сравнимости с предыдущей формулой, к линейной скорости, м/сек; d 1 - диаметр зерен поглотителя, который может быть выражен через диаметр воздуховодов между зернами. На практике, в последнем случае l и d 1 выражают в см, υ 1 - в л/мин·см2.

Таким образом, поскольку сопротивление противогаза складывается из сопротивления его воздуховодов, местных сопротивлений и сопротивления регенеративного или фильтрующего патрона, суммарное сопротивление должно быть:

H = xυ n , (60)

где x - коэффициент пропорциональности, учитывающий как коэффициент сопротивления, так и значения для различных частей противогаза, а n - для противогазов различных конструкций может принимать значение от 2 (для шлангового респиратора) до значений близких к 1 (для фильтрующих самоспасателей без соединительного шланга). Для изображенного на графике случая дыхания в изолирующем противогазе со сжатым кислородом n близко к 1,7 и x= 25 мм, вод. ст., при выражении υ в л/сек.

Эластические элементы легких оказывают сопротивление при растяжении легких во время вдоха. Измеряется эластическое сопротивление приростом давления, необходимого для растяжения лёгкого.

Где: E - эластическое сопротивление,

dP- прирост давления,

dV- прирост объёма,

С - растяжимость лёгкого.

Растяжимость показывает, на сколько возрастает объём легкого при увеличении внутрилегочного давления. При увеличении транспульмональногодавления на 10 мм. вод. ст. объем легких у взрослого человека возрастает на 200 мл.

Эластические свойства лёгких определяются:

1) Упругостью ткани стенки альвеолы благодаря наличию в ней каркаса из эластических волокон.

2) Тонусом бронхиальных мышц.

3) Поверхностным натяжением слоя жидкости, покрывающей внутреннюю поверхность альвеолы.

Внутренняя поверхность альвеолы выстлана с у р ф а к т а н т о м, слоем толщиной до 0,1 мкм, состоящим из поперечно ориентированных молекул фосфолипидов. Присутствие сурфактанта снижает поверхностное натяжение в результате того, что гидрофильные головки этих молекул связаны с молекулами воды, а гидрофобные окончания слабо взаимодействуют между собой и другими молекулами. Таким образом, молекулы сурфактанта образуют на поверхности жидкости тонкий гидрофобный слой. Наличие сурфактанта препятствует спадению и перерастяжению альвеол. Заряды свободного участка молекулы за счёт сил отталкивания препятствуют сближению противоположных стенок альвеолы, а сила межмолекулярного взаимодействия противодействует перерастяжению альвеол. За счёт сурфактанта при растяжении лёгких сопротивление возрастает, а при уменьшении объёма альвеол - снижается. Участок молекулы со стороны альвеолярного просвета гидрофобен, отталкивает воду, поэтому водяные пары в альвеолярном воздухе не препятствуют газообмену.

Неэластическое сопротивление

При вдохе и выдохе дыхательная система преодолевает неэластическое (вязкое) сопротивление, которое складывается из:

1) аэродинамического сопротивления воздухоносных путей,

2) вязкого сопротивления тканей.

Неэластическое сопротивление дыханию обусловлено, главным образом, силами трения внутри воздушной струи и между потоком воздуха и стенками дыхательных путей. Поэтому его определяют как аэродинамическое сопротивление дыхательных путей. Измеряется силой (Р), которую нужно приложить, чтобы сообщить воздушной струе некоторую объемную скорость (V) и преодолеть сопротивление дыхательных путей (R).



Сопротивление дыхательных путей при скорости воздушного потока 0,5 л/с равно 1,7 см вод.ст./л в сек.

Легочные объемы

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Жизненная ёмкость лёгких - сумма дыхательного объёма и резервных объёмов вдоха и выдоха (около 3,5л). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких . У взрослого человека равняется примерно 4,2-6,0 л.

Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью . Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом .

Функциональная остаточная емкость имеет важное физиологическое значение, поскольку выравнивает колебания содержания газов в альвеолярном пространстве, которые могли бы измениться в связи со сменой фаз дыхательного цикла. Поступающие во время вдоха в альвеолы 350 мл воздуха смешивается с воздухом, содержащимся в легких, количество которого в среднем 2, 5 – 3,5 л. Поэтому при вдохе обновляется примерно 1/7 часть смеси газов в альвеолах. Поэтому газовый состав альвеолярного пространства существенно не изменяется.

В каждой альвеоле газообмен характеризуется своим вентиляционно-перфузионным отношением (ВПО). Нормальное соотношение между альвеолярной вентиляцией и лёгочным кровотоком составляет 4/5 = 0,8, т.е. в минуту в альвеолы поступает 4 л воздуха и через сосудистое русло легких протекает за это время 5 л крови (на верхушке легкого соотношение в целом больше, чем на основании легких). Такое соотношение вентиляции и перфузии обеспечивает потребление кислорода достаточное для метаболизма за время нахождения крови в капиллярах легкого. Величина легочного кровотока в покое составляет 5-6 л/мин, движущей силой является разница давления около 8 мм рт. ст. между легочной артерией и левым предсердием. При физической работе легочной кровоток увеличивается в 4 раза, а давление в легочной артерии в 2 раза. Это уменьшение сосудистого сопротивления происходит пассивно в результате расширения легочных сосудов и раскрытия резервных капилляров. В покое кровь протекает примерно только через 50% всех легочных капилляров. По мере возрастания нагрузки доля перфузируемых капилляров возрастает, параллельно увеличивается и площадь газообменной поверхности. Легочный кровоток отличается региональной неравномерностью, которая зависит, в основном, от положения тела. При вертикальном положении тела лучше снабжаются кровью основания легких. Основными факторами, от которых зависит насыщение крови в легких кислородом и удаление из нее углекислого газа, являются альвеолярная вентиляция, перфузия легких и диффузионная способность легких.



Жизненная емкость легких.

Жизненная ёмкость лёгких это объем воздуха, который человек может выдохнуть после максимально глубокого вдоха. Это сумма дыхательного объёма и резервных объёмов вдоха и выдоха (у человека среднего возраста и среднего телосложения равен около 3,5л).

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких. Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью. Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом.

Альвеолярная вентиляция.

Лёгочная вентиляция - движение воздуха в лёгких во время дыхания. Она характеризуется минутным объёмом дыхания (МОД). Минутным объемом дыхания называется объем воздуха, вдыхаемого или выдыхаемого за 1 минуту. Он равен произведению дыхательного объема и частоты дыхательных движений. Частота дыхательных движений у взрослого человека в покое равна 14 л/мин. Минутный объем дыхания равен примерно 7 л/мин. При физической нагрузке может достигать 120 л/мин.

Альвеолярная вентиляция характеризует обмен воздуха в альвеолах и определяет эффективность вентиляции. Альвеолярной вентиляцией называется часть минутного объема дыхания, достигающая альвеол. Объём альвеолярной вентиляции равен разнице между дыхательным объёмом и объёмом воздуха мёртвого пространства, умноженной на число дыхательных движений в 1 минуту. (V альвеолярной вентиляции = (ДО - V мёртвого пространства) х ЧД/мин). Таким образом, при общей вентиляции легких 7 л/мин альвеолярная вентиляция равна 5 л/мин.

Анатомическое мертвое пространство. Анатомическим мертвым пространством называется объем, заполняющий воздухоносные пути, в которых не происходит газообмен. Оно включает носовую, ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Этот объем у взрослых равен примерно 150 мл.

Функциональное мертвое пространство. К нему относятся все участки дыхательной системы, в которых не происходит газообмен, включая не только воздухоносные пути, но и те альвеолы, которые вентилируются, но не перфузируются кровью. Альвеолярным мертвым пространством обозначается объем альвеол апикальных участков легких, которые вентилируются, но не перфузируются кровью. Оно может оказать отрицательное влияние на газообмен в легких при снижении минутного объема крови, снижении давления в сосудистой системе легких, анемии, снижении воздушности легких. Сумма объемов «анатомического» и альвеолярного обозначается как функциональное или физиологическое мертвое пространство.

Заключение

Нормальная жизнедеятельность клеток организма возможна при условии постоянного поступления кислорода и удаления углекислого газа. Обмен газами между клетками (организмом) и окружающей средой называется дыханием.

Поступление воздуха в альвеолы обусловлено разностью давлений между атмосферой и альвеолами, которая возникает в результате увеличения объема грудной клетки, плевральной полости, альвеол и понижения в них давления по отношению к атмосферному. Возникающая разность давлений между атмосферой и альвеолами обеспечивает поступление атмосферного воздуха по градиенту давления в альвеолы. Выдох совершается пассивно в результате расслабления инспираторных мышц и превышения альвеолярного давления над атмосферным.

Учебно-контрольные вопросы по теме лекции

1. Значение дыхания. Внешнее дыхание. Механизм вдоха и выдоха.

2. Отрицательное внутриплевральное давление, его значение для дыхания и кровообращения. Пневмоторакс. Типы дыхания.

3. Лёгочная и альвеолярная вентиляция. Жизненная ёмкость лёгких и дыхательные объемы.