Скорость волны. Уравнение гармонической бегущей волны. Длина волны. Скорость распространения волн Как определить скорость распространения волны




Продольные волны – это волны, в которых колебания частиц среды происходят вдоль направления распространения волнового процесса.

Возникновение вида волн зависит от упругих свойств среды, в которых распространяются волны.

В телах, в которых возможны упругие деформации сжатия, растяжения и сдвига одновременно могут быть продольные и поперечные волны – твердые тела.

В газах и жидкостях – продольные волны, т.к. они не обладают упругостью в отношении сдвига.

II. Характеристики волн. Уравнение волны.

Длина волны – расстояние между ближайшими точками волны, колеблющимися в одинаковых фазах (l).

Период волны – время одного полного колебания точек волны (Т).

Частота волны – величина, обратная периоду (ν).

За время t = T волна распространяется на расстояние, равное l.

Введя понятия l и Т, можно говорить о скорости распространения волн.

Скорость распространения волн зависит от среды:

а) от ее плотности;

б) от упругости.

гдеЕ – модуль Юнга;

G – модуль сдвига.

Для твердых тел Е > G, поэтому Vпр > Vпопер.

Скорость распространения не зависит:

а) от формы импульса (т.е. как меняется со временем сжатие);

б) от величины сжатия.

Попробуем математически выразить процесс распространения волны. Источником волн является колеблющаяся система. Частицы среды, прилегающие к ней, также приходят в колебание.

Уравнение бегущей волны

Уравнение бегущей волны определяет смещение любой точки среды, находящейся на расстоянии ℓ от вибратора в данный момент времени.

Отметим также, что частицы среды не перемещаются вслед за волной, а лишь колеблются около положения равновесия. Скорость распространения волны, это скорость распространения возмущения, вызывающего смещение частиц от положения равновесия.

Чтобы найти скорость смещения в волне колеблющейся частицы среды, берут производную от Х в формуле (2):

т.е. скорость частиц в волне меняется по тому же закону, что и смещение, но сдвинута по фазе относительно смещения на π/2.

Когда смещение достигает максимума, скорость частицы меняет знак, т.е. на мгновение обращается в нуль.

Аналогично можно найти закон изменения со временем ускорения частиц:

Ускорение также меняется по закону смещения, но направлено против смещения, т.е. сдвинуто по фазе относительно смещения на p.

Графики смещение, скорости и ускорения частиц волны.

Кроме продольных и поперечных волн, распространяющихся в сплошных средах, существуют другие виды волновых процессов:

поверхностные волны, возникают на поверхности раздела двух сред с разной плотностью.

Энергия волны

Объемная плотность энергии волны в упругой среде (w ), определяется следующим образом:

где - полная механическая энергия волны в объеме . Из (8.11) следует, что объемная плотность энергии плоских синусоидальных волн

Итак, область пространства, участвующая в волновом процессе, обладает дополнительным запасом энергии. Эта энергия доставляется от источника колебаний в различные точки среды самой волны, следовательно, волна переносит энергию.

Сложение гармонических колебаний, направленных вдоль одной прямой.

Отсюда следует вывод, что суммарное движение - гармоническое колебание, имеющее заданную циклическую частоту

Сложение взаимно перпендикулярных колебаний. НЕ СМОГЛА СОКРАТИТЬ. ИЗВИНИТЕ

Пусть материальная точка одновременно участвует в двух гармонических колебаниях, совершающихся с одинаковыми периодами Т в двух взаимно перпендикулярных направлениях. С этими направлениями можно связать прямоугольную систему координат XOY, расположив начало координат в положении равновесия точки. Обозначим смещение точки С вдоль осей ОХ и OY, соответственно, через х и у. (рис 7.7)

Рассмотрим несколько частных случаев.

A. Начальные фазы колебаний одинаковы. Выберем момент начала отсчета времени таким образом, чтобы начальные фазы обоих колебаний были равны нулю. Тогда смещения вдоль осей ОХ и OY можно выразить уравнениями:

Поделив почленно эти равенства, получим уравнения траектории точки С:
или

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний точка С колеблется вдоль отрезка прямой, проходящей через начало координат (рис. 7.7).

Б. Начальная разность фаз равна π Уравнения колебания в этом случае имеют вид:

Уравнение траектории точки

(7.15)

Следовательно, точка С колеблется вдоль отрезка прямой, проходящей через начало координат, но лежащие в других квадрантах, чем в первом случае. Амплитуда А результирующих колебаний в обоих рассмотренных случаях равна

В. Начальная разность фаз равна .

Уравнения колебаний имеют вид:

Разделим первое уравнение на , второе - на :

Возведем оба равенства в квадрат и сложим. Получим следующее уравнение траектории результирующего движения колеблющейся точки

(7.16)

Колеблющаяся точка С движется по эллипсу с полуосями и . При равных амплитудах траекторией суммарного движения будет окружность В общем случае при , но кратным, т.е. , при сложении, взаимно перпендикулярных колебаний колеблющаяся точка движется по кривым, называемым фигурами Лиссажу. Конфигурация этих кривых зависит от соотношения амплитуд, начальных фаз и периодов составляющих колебаний.

Спектральный анализ и синтез Гармонический анализ и синтез Гармоническим анализом называют разложение функции f(t), заданной на отрезке в ряд Фурье или в вычислении коэффициентов Фурье ak и bk по формулам (2) и (3). Гармоническим синтезом называют получение колебаний сложной формы путем суммирования их гармонических составляющих (гармоник) (Рисунок 16). Классический спектральный анализ Спектром временной зависимости (функции) f(t) называется совокупность ее гармонических составляющих, образующих ряд Фурье. Спектр можно характеризовать некоторой зависимостью Аk (спектр амплитуд) и  k (спектр фаз) от частоты  k = k 1. Спектральный анализ периодических функций заключается в нахождении амплитуды Аk и фазы  k гармоник (косинусоид) ряда Фурье (4). Задача, обратная спектральному анализу, называется спектральным синтезом (Рисунок 17 - продолжение Рисунка 16). Численный спектральный анализ Численный спектральный анализ заключается в нахождении коэффициентов a0, a1, ..., ak, b1, b2, ..., bk (или A1, A2, ..., Ak,  1,  2, ...,  k) для периодической функции y = f(t), заданной на отрезке дискретными отсчетами. Он сводится к вычислению коэффициентов Фурье по формулам численного интегрирования для метода прямоугольников
(7) (8)

где  t = T / N - шаг, с которым расположены абсциссы y = f (t ).

Гармонические колебания - непрерывные колебания синусоидальной формы, имеющие одну фиксированную частоту. При взаимодействии с веществом любой волновой гармонический процесс возбуждает в веществе собственные колебания. Для этих, вторично возбужденных в веществе колебаний характерна совокупность частот, которые кратны основной частоте, принятой от датчика (fundamental harmonic). Вторая гармоника (second harmonic) имеет частоту в 2 раза большую, чем основная. Третья гармоника имеет частоту в 3 раза большую, и так далее. Каждая последующая гармоника имеет гораздо меньшую амплитуду колебаний, чем основная, но современная техника позволяет выделить их, усилить и получить из них диагностически значимую информацию в виде гармонического В-изображения.

Каковы же преимущества гармонического В-изображения? Классическое В-изображение всегда содержит большое количество артефактов. Возникновение большинства из них обусловлено прохождением сигнала по пути отдатчика до интересующего объекта. Гармонический же сигнал преодолевает путь только из глубины ткани, где он собственно и возник, до датчика. Строится гармоническое изображение, лишенное большинства артефактов пути прохождения луча от датчика к объекту. Особенно это очевидно, когда изображение строится исключительно на основе второго гармонического сигнала, без использования основной гармоники.

Особенно полезна вторая гармоника при исследовании «трудных» для визуализации пациентов.

Для общего развития:

Еще несколько лет назад 3D воспринималось как практически мало нужное длительное по времени эстетство профессионалов ультразвуковой диагностики. Сейчас оно является неотъемлемой частью не только научных изысканий, но и практической диагностики. Все чаще можно встретить такие термины как «хирургия под контролем визуализации 3D», или «компьютерно-интегирированная хирургия», или «виртуальная колоноскопия».

Гидравлическое или ГИДРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ - сила, возникающая при движении тела в жидкости или несжимаемом газе, а также при течении жидкости или газа в канале.

Потери энергии (уменьшение гидравлического напора) можно наблюдать в движущейся жидкости не только на сравнительно длинных участках, но и на коротких. В одних случаях потери напора распределяются (иногда равномерно) по длине трубопровода - это линейные потери; в других - они сосредоточены на очень коротких участках, длиной которых можно пренебречь, - на так называемых местных гидравлических сопротивлениях: вентили, всевозможные закругления, сужения, расширения и т.д., короче всюду, где поток претерпевает деформацию. Источником потерь во всех случаях является вязкость жидкости. С точки зрения гидродинамики кровь является неоднородной жидкостью.

Формула Вейсбаха, определяющая потери давления на гидравлических сопротивлениях, имеет вид:

Потери давления на гидравлическом сопротивлении; - плотность жидкости.

Если гидравлическое сопротивление представляет собой участок трубы длиной и диаметром , то коэффициент Дарси определяется следующим образом:

где - коэффициент потерь на трение по длине.

Тогда формула Дарси приобретает вид:

или для потери давления:

Входное сопротивление

У любого электрического устройства, для работы которого требуется сигнал, имеется входное сопротивление. Точно так же, как и любое другое сопротивление (в частности, сопротивление в цепях постоянного тока), входное сопротивление устройства есть мера тока, текущего по входной цепи, когда ко входу приложено определенное напряжение.

Измерение входного сопротивления

Напряжение на входе легко измерить с помощью осциллографа или вольтметра переменного напряжения. Однако так же легко измерить входной переменный ток нельзя, в частности в случае, когда входное сопротивление велико. Самый подходящий способ измерения входного сопротивления показан на рис. 5.3. Резистор с известным сопротивлением R Ом включают между генератором и входом исследуемой схемы. Затем с помощью осциллографа или вольтметра переменного напряжения с высокоомным входом измеряются напряжения Vx и V2, по обе стороны резистора R.

Физические параметры звука

Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через , то:

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания :

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания , характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы..

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды () на скорость (с) распространения в ней ультразвуковых волн.

Удельное акустическое сопротивление измеряется в паскаль -секунда на метр (Па·с/м)

Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

где Р - максимальное акустическое давление (амплитуда давления);

· f - частота;

· с - скорость распространения ультразвука;

· - плотность среды;

· А - амплитуда колебания частиц среды.

Для выражения звукового давления в единицах СИ используется Паскаль (ПаАмплитудное значение ускорения (а) определяется выражением:

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению.

Ультразвук - упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц.

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ )

Основная статья: Ультразвуковое исследование

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Рассмотрим более подробно процесс распространения поперечной волны (рис. 6.4).

Пусть в начальный момент все шары находились в положении равновесия (рис. 6.4,а ), а период колебаний каждого шара равен Т . Тогда через время t = Т /4шар 1 достигнет крайнего верхнего положения. При этом шары 2 и 3 также отклонятся вверх, но не так сильно, как шар 1 , а шар 4 еще не успеет сдвинутся с места (рис. 6.4,б ).

Читатель : А почему волна докатится именно до шара 4 , а, например, не до шара 7 ?

В момент времени t = начнет движение шар 7 (рис. 6.4,в ), в момент – шар 10 (рис. 6.4,г ). В момент t = T , когда шар 1 совершит одно полное колебание (рис. 6.4,д ), волна докатится до шара 13 , который в этот момент начнет свое движение.

Расстояние, на которое распространились колебания за один период, называется длиной волны. Длину волны обычно обозначают греческой буквой l (лямбда) (см. рис. 6.4,д ).

Под скоростью волны мы понимаем скорость распространения колебаний. Например, если чайка будет лететь, оставаясь все время над гребнем морской волны, то ее скорость будет равна скорости этой волны. Поскольку за период Т волна распространяется на расстояние, равное длине волны l, скорость волны равна

Поскольку частота колебания , можем записать

и = ln. (6.2)

Наблюдения показывают, что вскоре после того, как волна «установится», все шары, отстоящие друг от друга на целое число длин волн, будут колебаться совершенно одинаково: в любой момент времени их координаты и скорости будут совпадать, то есть они будут колебаться с одинаковыми фазами (синфазно). Поэтому длину волны можно определить как кратчайшие расстояния между двумя точками, колеблющимися синфазно. На рис. 6.4,е синфазно колеблются шары 1 и 13 , 2 и 14 , 3 и 15 и т.д.

Продольная волна

Процесс образования продольной волны удобно наблюдать с помощью прибора, показанного на рис. 6.5.

Рис. 6.5

Если крайний шарик заставить совершать колебания вдоль прямой, соединяющей шары, то постепенно все шары придут в колебательное движение. Причем колебаться они будут вдоль направления распространения колебаний, поэтому такая волна называется продольной.

Установившаяся продольная волна в разные моменты времени показана на рис. 6.6. Видно, что вдоль цепочки как бы перемещаются сжатия и разрежения.

Помимо уже рассмотренных нами движений, почти во всех областях физики встречается ещё один тип движения – волны . Отличительной особенностью этого движения, делающей его уникальным, является то, что в волне распространяются не сами частицы вещества, а изменения в их состоянии (возмущения).

Возмущения, распространяющиеся в пространстве с течением времени, называются волнами . Волны бывают механические и электромагнитные.

Упругие волны – это распространяющиеся возмущения упругой среды.

Возмущение упругой среды – это любое отклонение частиц этой среды от положения равновесия. Возмущения возникают в результате деформации среды в каком-либо её месте.

Совокупность всех точек, куда дошла волна в данный момент времени, образует поверхность, называемую фронтом волны .

По форме фронта волны делятся на сферические и плоские. Направление распространения фронта волны определяется перпендикуляром к фронту волны, называемым лучом . Для сферической волны лучи представляют собой радиально расходящийся пучок. Для плоской волны лучи- пучок параллельных прямых.

В любой механической волне одновременно существуют два вида движения: колебания частиц среды и распространения возмущения.

Волна, в которой колебания частиц среды и распространение возмущения происходят в одном направлении, называется продольной (рис.7.2 а ).

Волна, в которой частицы среды колеблются перпендикулярно направлению распространения возмущений, называется поперечной (рис. 7.2 б).

В продольной волне возмущения представляют собой сжатие (или разрежение) среды, а в поперечной - смещения (сдвига) одних слоев среды относительно других. Продольные волны могут распространяться во всех средах (и в жидких, и в твёрдых, и в газообразных), а поперечные - только в твёрдых.

Каждая волна распространяется с некоторой скоростью. Под скоростью волны υ понимают скорость распространения возмущения. Скорость волны определяется свойствами среды, в которой эта волна распространяется. В твёрдых телах скорость продольных волн больше скорости поперечных.

Длиной волны λ называется расстояние, на которое распространяется волна за время, равное периоду колебания в её источнике . Поскольку скорость волны – величина постоянная (для данной среды), то пройденной волной расстояние равно произведению скорости на время её распространения. Таким образом, длина волны

Из уравнения (7.1) следует, что частицы, отделённые друг от друга интервалом λ, колеблются в одинаковой фазе. Тогда можно дать следующее определение длины волны: длина волны есть расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе.

Выведем уравнение плоской волны, позволяющее определить смещение любой точки волны в любой момент времени. Пусть волна распространяется вдоль луча от источника с некоторой скоростью υ.

Источник возбуждает простые гармонические колебания, и смещение любой точки волны в любой момент времени определяетcz уравнением

S = Asinωt (7. 2)

Тогда точка среды, отстоящая от источника волны на расстоянии х, также будет совершать гармонические колебания, но с запаздыванием по времени на величину , т.е. на время, необходимое для распространения колебаний от источника до этой точки. Смещение колеблющейся точки относительно положения равновесия в любой момент времени будет описываться соотношением

(7. 3)

Это и есть уравнение плоской волны. Эта волна, характеризуется следующими параметрами:

· S - смещение от положения равновесии точки упругой среды, до которой дошло колебание;

· ω - циклическая частота колебаний, генерируемых источником, с которой колеблются и точки среды;

· υ - скорость распространения волны (фазовая скорость);

· х – расстояние до той точки среды, куда дошло колебание и смещение которой равно S;

· t – время отсчитываемое от начала колебаний;

Вводя в выражение (7. 3) длину волны λ, уравнение плоской волны можно записать так:

(7. 4)

где называется волновым числом (число волн, приходящихся на единицу длины).

Волновое уравнение

Уравнение плоской волны (7. 5) - одно из возможных решений общего дифференциального уравнения с частными производными, описывающего процесс распространения возмущения в среде. Такое уравнение называется волновым . В уравнения (7.5) входят переменные t и х, т.е. смещение периодически меняется и во времени и в пространстве S = f(x, t). Волновое уравнение можно получить, если продифференцировать (7. 5) дважды по t:

И дважды по х

Подставляя первое уравнение во второе, получаем уравнение плоской бегущей волны вдоль оси X:

(7. 6)

Уравнение (7.6) называют волновым , и для общего случая, когда смещение является функцией четырех переменных, оно имеет вид

(7.7)

, где -оператор Лапласа

§ 7.3 Энергия волны. Вектора Умова .

При распространении в среде плоской волны

(7.8)

происходит перенос энергии. Мысленно выделим элементарный объем ∆V, настолько малый, что скорость движения и деформацию во всех его точках можно считать одинаковыми и равными соответственно

Выделенный объём обладает кинетической энергией

(7.10)

m=ρ∆V - масса вещества в объеме ∆V, ρ - плотность среды].

(7.11)

Подставляя в (7.10) значение , получаем

(7.12)

Максимумы кинетической энергии приходятся на те точки среды, которые проходят положения равновесия в данный момент времени (S = 0), в эти моменты времени колебательное движение точек среды характеризуется наибольшей скоростью.

Рассматриваемый объем ∆V обладает также потенциальной энергией упругой деформации

[Е - модуль Юнга; - относительное удлинение или сжатие].

Учитывая формулу (7.8) и выражение для производной, находим, что потенциальная энергия равна

(7.13)

Анализ выражений (7.12) и (7.13) показывает, что максимумы потенциальной и кинетической энергий совпадают. Следует отметить, что это является характерной особенностью бегущих волн. Чтобы определить полную энергию объема ∆V, нужно взять сумму потенциальной и кинетической энергий:

Разделив эту энергию на объем, в котором она содержится, получим плотность энергии:

(7.15)

Из выражения (7.15) следует, что плотность энергии является функцией координаты х, т. е. в различных точках пространства она имеет различные значения. Максимального значения плотность энергии достигает в тех точках пространства, где смещение равно нулю (S = 0). Средняя плотность энергии в каждой точке среды равна

(7.16)

так как среднее значение

Таким образом, среда, в которой распространяется волна, обладает дополнительным запасом энергии, которая доставляется от источника колебаний в различные области среды.

Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называют вектором Умова (по имени русского ученого Н. А. Умова). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени сквозь единичную площадку, расположенную перпендикулярно направлению распространения волны.

Предположим, что точка, совершающая колебание находится в среде, все частицы

которой связаны между собой. Тогда энергия ее колебания может передаваться окружаю -

щим точкам, вызывая их колебание.

Явление распространения колебания в среде называется волной.

Заметим сразу, что при распространении колебаний в среде, т. е. в волне, колеблю -

щиеся частицы не перемещаются с распространяющимся колебательным процессом, а колеблются около своих положений равновесия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса массы вещества.

    Продольные и поперечные волны

Если колебания частиц перпендикулярны к направлению распространения колеба -

ний, то волна называется поперечной; рис. 1, здесь -ускорение, - смещение,- ампли -

туда, - период колебаний.

Если частицы колеблются по той же прямой, вдоль которой распространяется

колебание, то мы назовем волну продольной; рис. 2, где -ускорение, - смещение,

Амплитуда, - период колебаний.

    Упругие среды и их свойства

Являются ли волны, распространяющиеся в среде, продольными или поперечными

– зависит от упругих свойств среды.

Если при сдвиге одного слоя среды по отношению к другому слою возникают упругие силы, стремящиеся возвратить сдвинутый слой в положение равновесия, то в среде могут распространяться поперечные волны. Такой средой служит твердое тело.

Если в среде не возникают упругие силы при сдвиге параллельных слоев друг относительно друга, то поперечные волны не могут образоваться. Например, жидкость и газ представляют среды, в которых поперечные волны не распространяются. Последнее не относится к поверхности жидкости, в которой могут распространяться и поперечные волны, носящие более сложный характер: в них частицы движутся по замкнутым круго -

вым траекториям.

Если в среде возникают силы упругости при деформации сжатия или растяжения, то в среде могут распространяться продольные волны.

В жидкости и газе распространяются только продольные волны.

В твердых телах продольные волны могут распространяться наряду с поперечны –

Скорость распространения продольных волн – обратно пропорциональна корню квадратному из коэффициента упругости среды и ее плотности :

т. к. приближенно - модулю Юнга среды, то (1) можно заменить следующим:

Скорость распространения поперечных волн зависит от модуля сдвига :

(3)

    Длина волны, фазовая скорость, волновая поверхность, фронт волны

Расстояние, на которое определенная фаза колебания распространяется за один

период колебания, называется длиной волны, длину волны обозначим буквой .

На рис. 3 графически интерпретирована зависимость между смещением частиц среды, участвующих в вол -

новом процессе, и расстоянием этих частиц, например, частицы , от источника колебаний для какого – то фиксированного момента времени. Приведенный гра -

фик – это график гармонической поперечной волны, которая распространяется со скоростью вдоль направ -

ления распространения . Из рис. 3 ясно, что длина волны представляет собой наименьшее расстояние между точками, колеблющимися в одинаковых фазах. Хотя,

приведенный график , похож на график гармони –

ческого колебания, но они различны по существу: если

график волны определяет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени, то график колебаний – зависимость сме -

щения данной частицы от времени.

Под скоростью распространения волны подразумевается ее фазовая скорость, т. е. скорость распространения данной фазы колебания; например, в момент времени точка , рис.1, рис. 3 имела какую – то начальную фазу, т. е. выходила из поло - жения равновесия; то через промежуток времени такую же начальную фазу приобрела точка , отстоящая от точки на расстоянии . Следовательно начальная фаза за время, равное периоду распространилась на расстояние . Отсюда для фазовой скорости по -

лучаем определение:

Представим, что точка, от которой идут колебания (центр колебания) колеблется в сплошной среде. Колебания распространяются от центра во все стороны.

Геометрическое место точек, до которых к некоторому моменту времени дошло колебание, называется фронтом волны.

Можно также в среде выделить геометрическое место точек, колеблющихся в оди -

наковых фазах; эта совокупность точек образует поверхность одинаковых фаз или волно -

вую поверхность. Очевидно, что фронт волны является частным случаем волновой по -

верхности.

Форма фронта волны определяет типы волн, например, плоской волной называется волна, фронт которой представляет плоскость, и т. д.

Направления, в которых распространяются колебания, называются лучами. В изо -

тропной среде лучи нормальны к фронту волны; при сферическом фронте волны лучи на -

правлены по радиусам.

    Уравнение бегущей синусоидальной волны

Выясним, каким образом можно аналитически охарактеризовать волновой процесс,

рис. 3. Обозначим через смещение точки из положения равновесия. Волновой процесс будет известен, если знать, какое значение имеет в каждый момент времени для каждой точки прямой, вдоль которой распространяется волна.

Пусть колебания в точке рис. 3 , происходят по закону:

(5)

здесь - амплитуда колебаний; - круговая частота; - время, отсчитанное от момента начала колебаний.

Возьмем на направлении произвольную точку , лежащую от начала коорди -

нат на расстоянии . Колебания, распространяясь от точки с фазовой скоростью (4), дойдут до точки через промежуток времени

Следовательно, точка начнет колебаться на время позже точки . Если волны не затухают, то ее смещение из положения равновесия будет

(7)

где - время, отсчитанное от того момента, когда точка начала колебаться, которое связано со временем следующим образом: , потому что точка начала колебаться на промежуток времени позже; подставляя это значение в (7), получим

или, используя здесь (6), имеем

Это выражение (8) дает смещение как функцию времени и расстояния точки от центра колебаний ; оно представляет собою искомое уравнение волны, распространя -

ющейся вдоль , рис. 3.

Формула (8) представляет собой уравнение плоской волны, распространяющейся вдоль

Действительно, в этом случае любая плоскость , рис. 4, перпендикулярная к направлению , представит собою поверх -

ность одинаковых фаз, и, поэтому, все точки этой плоскости имеют в один и тот же момент времени одно и то же смещение , опреде -

ляемое лишь расстоянием , на котором плоскость лежит от начала координат .

Волна противоположного направления, чем у волны (8), имеет вид:

Выражение (8) может быть преобразовано, если воспользоваться соотношением (4), по

которому можно ввести волновое число :

где - длина волны,

или, если вместо круговой частоты ввести обычную частоту, называемую еще и линей -

ной частотой, , то

Разберем на примере волны, рис. 3, следствия, вытекающие из уравнения (8):

a) волновой процесс – это процесс двоякопереодический: аргумент косинуса в (8) зависит от двух переменных – времени и координаты ; т. е. волна имеет двойную переодичность: в пространстве и во времени;

b) для данного момента времени уравнение (8) дает распределение смещения частиц как функцию их расстояния от начала координат;

c) частицы, колеблющиеся под влиянием бегущей волны в данный момент времени расположены по косинусоиде;

d) данная частица, характеризуемая определенным значением , совершает во времени гармоническое колебательное движение:

e) величина постоянна для данной точки и представляет собою начальную фазу колебаний в этой точке;

f) две точки, характеризуемые расстояниями и от начала координат, имеют разность фаз:

из (15) видно, что две точки, отстоящие друг от друга на расстоянии, равном длине волны , т. е. для которых , имеют разность фаз ; а также они имеют для каждого данного момента времени одинаковые по величине и направле -

нию смещения ; про такие две точки говорят, что они колеблются в одинаковой фазе;

для точек, отстоящих друг от друга на расстоянии , т. е. отстоящих друг от друга на полволны, разность фаз по (15), равна ; такие точки колеблются в противоположных фазах – они имеют для каждого данного момента смещения, одинаковые по абсолютному значению, но разные по знаку: если одна точка отклонена кверху, то другая – книзу, и наоборот.

В упругой среде возможны волны иного вида, чем бегущие волны (8), например, сферические волны, у которых зависимость смещения от координат и времени имеет вид:

В сферической волне амплитуда убывает обратно пропорционально расстоянию от источника колебаний.

6. Энергия волны

Энергия участка среды, в которой распространяется бегущая волна (8):

складывается из кинетической энергии и потенциальной энергии . Пусть объем участка среды равен ; обозначим его массу через и скорость смещения его частиц – через , тогда кинетическая энергия

замечая, что , где - плотность среды, и находя выражение для скорости на основании (8)

перепишем выражение (17) в виде:

(19)

Потенциальная энергия участка твердого тела, подвергнутого относительной деформации , как известно, равна

(20)

где - модуль упругости или модуль Юнга; - изменение длины твердого тела из за воздействия на его концы сил, равных по значению величины , - площадь поперечного сечения.

Перепишем (20), вводя коэффицент упругости и деля, и умножая правую

часть его на , так

.

Если относительную деформацию представить, используя бесконечно малые, в виде , где - элементарная разность смещений частиц, отстоящих друг от друга на ,

. (21)

Определяя выражение для на основании (8):

запишем (21) в виде:

(22)

Сравнивая (19) и (22), мы видим, что и кинетическая энергия и потенциальная энергия меняются в одной фазе, т. е. синфазно и синхронно достигают максимума и минимума. Этим энергия участка волны существенно отличается от энергии колебания изолиро -

ванной точки, где при максимуме - кинетической энергии - потенциальная имеет минимум, и наоборот. При колебании отдельной точки полный запас энергии колебания остается постоянным, а т. к. основным свойством всех волн, независимо от их природы, является перенос энергии без переноса массы вещества, то полная энергия участка среды, в которой распространяется волна, не остается постоянной.

Сложим правые части (19) и (22), и подсчитаем полную энергию элемента среды объемом :

Так как по (1) фазовая скорость распространения волн в упругой среде

то (23) преобразуем так

Таким образом, энергия участка волны пропорциональна квадрату амплитуды, квадрату циклической частоты и плотности среды.

    Вектор плотности потока энергии – вектор Умова.

Введем в рассмотрение плотность энергии или объемную плотность энергии упругой волны

где - объем волнообразования.

Видим, что плотность энергии, как и сама энергия - величина переменная, но т. к. среднее значение квадрата синуса за период равно , то в соответствии с (25) среднее значение плотности энергии

, (26)

при неизменных параметрах волнообразо -

вания, будет для изотропной среды величиной неизменной, если в среде нет поглощения.

В силу того, что энергия (24) не остается локализованной в данном объеме, а переме -

щается в среде, можно ввести в рассмотрение понятие о потоке энергии.

Под потоком энергии через поверх -

ность будем подразумевать величину, чис -

ленно равную количеству энергии, проходя -

щей через нее в единицу времени.

Возьмем поверхность , перпендикулярную к направлению скорости волны; тогда через эту поверхность за время, равное периоду, протечет количество энергии, равное энергии,

заключенной в столбе поперечного сечения и длиной , рис. 5; это количество энергии равно среднему значению плотности энергии , взятому за период и умноженному на объем столба , отсюда

(27)

Средний поток энергии (среднюю мощность) получим, поделив это выражение на время, в течение которого энергия протекает через поверхность

(28)

или, используя (26), найдем

(29)

Количество энергии, протекающее в единицу времени через единицу поверхности, называется плотностью потока. По такому определению, применяя (28), получим

Таким образом - это вектор, направление которого определяется направлением фазовой скорости и совпадает с направлением распространения волны.

Этот вектор был впервые введен в теорию волн российским пофессором

Н. А. Умовым и носит название вектора Умова.

Возьмем точечный источник колебаний и проведем сферу радиуса с центром в источнике. Волна и энергия, которая с ней связана, будет распространяться по радиусам,

т. е. перпендикулярно к поверхности сферы. За период через поверхность сферы протечет энергия, равная , где - поток энергии через сферу. Плотность потока

мы получим, если эту энергию поделим на величину поверхности сферы и время:

Так как при отсутствии поглощения колебаний в среде и установившемся волновом процессе средний поток энергии постоянен и не зависит от того, какого радиуса прове -

дена сфера, то (31) показывает, что средняя плотность потока обратно пропорциональна квадрату расстояния от точечного источника.

Обычно энергия колебательного движения в среде частично переходит во внутрен -

нюю энергию.

Полное количество энергии, которое перенесет волна, будет зависеть от расстояния пройденного ей от источника: чем дальше от источника находится волновая поверхность, тем меньшей энергией она обладает. Так как по (24) энергия пропорциональна квадрату амплитуды, то и амплитуда уменьшается по мере распространения волны. Предположим, что при прохождении слоя толщиной относительное уменьшение амплитуды пропорционально , т. е. напишем

,

где - постоянная величина, зависящая от природы среды.

Последнее равенство можно переписать

.

Если дифференциалы двух величин равны друг другу, то сами величины отличаются друг от друга на аддитивную постоянную величину , откуда

Постоянная определяется из начальных условий, что при величина равна , где - амплитуда колебаний в источнике волн, должна равняться , таким образом:

(32)

Уравнение плоской волны в среде с поглощением на основании (32) будет

Определим теперь убывание энергии волны с расстоянием. Обозначим - среднюю плотность энергии при , а через - среднюю плотность энергии на расстоянии , тогда по соотношениям (26) и (32), найдем

(34)

обозначим через и перепишем (34) так

Величина называется коэффициентом поглощения.

8. Волновое уравнение

Из уравнения волны (8) можно получить еще одно соотношение, которое нам понадобится дальше. Беря вторые производные от по переменным и , получим

откуда следует

Уравнение (36) мы получили дифференцируя (8). Обратно можно показать, что чисто переодическая волна, которой соответствует косинусоида (8), удовлетворяет дифферен -

циальному уравнению (36). Оно носит название волнового уравнения, т. к. установлено, что (36) удовлетворяет и ряд других функций, описывающих распространение волнового возмущения произвольной формы со скоростью .

9. Принцип Гюйгенса

Каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени.

В этом и есть сущность принципа Гюйгенса, который иллюстрируется на следующих рисунках:

Рис. 6 Малое отверстие в преграде является источником новых волн

Рис. 7 Построение Гюйгенса для плоской волны

Рис. 8 Построение Гюйгенса для сферической волны, распространяющей -

ся из центра

Принцип Гюйгенса это – геометрический прин -

цип. Он не затрагивает по существу вопроса об амплитуде, а следовательно, и об интенсивности распространяющихся за преградой волн.

    Групповая скорость

Рэлей впервые показал, что наряду с фазовой скоростью волн имеет смысл

ввести понятие о другой скорости, называемой групповой скоростью. Групповая скорость относится к случаю распространения волн, сложного не косинусоидального характера в среде, где фазовая скорость распространения косинусоидальных волн зависит от их частоты.

Зависимость фазовой скорости от их частоты или длины волн называется дисперсией волн.

Представим себе на поверхности воды волну в виде единичного горба или солитон, рис. 9, распространяющегося в определенном направлении. По методу Фурье такое слож -

ное колебание может быть разложено на группу чисто гармонических колебаний. Если все гармонические колебания распространяются по поверхности воды с одинаковыми скорос -

тями, то с той же скоростью будет распространяться и образуемое ими сложное колеба -

ние. Но, если скорости отдельных косинусоидальных волн различны, то непрерывно меняются разности фаз между ними, и горб, возникающий в результате их сложения, непрерывно меняет свою форму и перемещается со скоростью, не совпадающей с фазовой скоростью ни одной из слагаемых волн.

Всякий отрезок косинусоиды, рис. 10, тоже может по теореме Фурье разложен на бесчисленное множество неограниченных во времени идеальных косинусоид. Таким образом, всякая реальная волна представляет собой наложение – группу – бесконечных косинусоид, и скорость ее распространения в диспергирующей среде отлична от фазовой скорости слагаемых волн. Эта скорость распространения реальных волн в диспергирую -

щей среде и носит название групповой скорости. Только в среде, лишенной дисперсии, реальная волна распространяется со скоростью, совпадающей с фазовой скоростью тех косинусоидальных волн, сложением которых она образована.

Предположим, что группа волн состоит из двух волн, мало различающихся по длине:

a) волны с длиной волны , распространяющиеся со скоростью ;

b) волны с длиной волны , распространяющиеся со скоростью

Относительное расположение обеих волн для некоторого момента времени представлено на рис. 11. a. Горбы обеих волн сходятся в точке ; в одном месте расположен максимум результирующих колебаний. Пусть , тогда вторая волна обгоняет первую. Через некоторый промежуток времени она обгонит ее на отрезок ; в результате чего горбы обеих волн будут уже складываться в точке , рис. 11.b, т. е. место максимума результирующего сложного колебания окажется смещенным назад на отрезок, равный . Отсюда скорость распространения максимума результирующих колебаний относительно среды окажется меньше скорости распространения первой волны на величину . Эта скорость распространения максимума сложного колебания и есть групповая скорость; обозначая ее через ,имеем, т. е. чем сильнее выражена зависимость скорости распространения волн от их длины, называемая дисперсией.

Если , то короткие по длине волны обгоняют более длинные; этот случай носит название аномальной дисперсии .

    Принцип суперпозиции волн

При распространении в среде нескольких волн малой амплитуды выполняя -

ется, открытый Леонардо да – Винчи, принцип суперпозиции: колебание каждой частицы среды определяется как сумма независимых колебаний, которые совершали бы эти частицы при распространении каждой волны в отдельности. Принцип суперпозиции нарушается только для волн с очень большой амплитудой, например, в нелинейной оптике. Волны, характеризуемые одинаковой частотой и постоянной, не зависящей от времени, разностью фаз, называют когерентными; например, например, косинусоидаль -

ные или синусоидальные волны с одинаковой частотой.

Интерференцией называют сложение когерентных волн, в результате которого возникает устойчивое во времени усиление колебаний в одних точках и ослабление его в других. При этом происходит перераспределение энергии колебаний между соседними областями среды. Интерференция волн происходит только, если они когерентны.

    Стоячие волны

Особым примером результата интерференции двух волн служат так

называемые стоячие волны, образующиеся в результате наложения двух встречных плоских волн с одинаковыми амплитудами.

Сложение двух волн, распространяющихся в противоположных направлениях

Предположим, что две плоские волны с одинаковыми амплитудами распростра -

няются – одна по положительному напра -

влению , рис. 12, другая – по отрица -

тельному.

Если начало координат взять в такой точ -

ке, в которой встречные волны имеют одинаковые направления смещения, т. е. имеют одинаковые фазы, и выбрать отсчет времени так, чтобы начальные фазы ока -

Упругих волн в упругой среде , стоячими волнами . 2. Изучить метод определения скорости распространения... к направлению распространения волны . Упругие поперечные волны могут возникать лишь в таких средах , которые обладают...

  • Применение звуковых волн (1)

    Реферат >> Физика

    Механических колебаний, излучения и распространения звуковых (упругих ) волн в среде , разрабатываются методы измерения характеристик звука... закономерностей излучения, распространения и приёма упругих колебаний и волн в различных средах и системах; условно её ...

  • Ответы по курсу физики

    Шпаргалка >> Физика

    ... упругой силы. T=2π·корень из m/k (с) – период, k – коэффициент упругости , m – масса груза. № 9. Волны в упругой среде . Длина волны . Интенсивность волны . Скорость волны Волны ...

  • Что нужно знать и уметь?

    1.Определение длины волны.
    Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах.


    ЭТО ИНТЕРЕСНО

    Сейсмические волны.

    Сейсмическими волнами называются волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов. Так как Земля в основном твердая, в ней одновременно могут возникать 2 вида волн - продольные и поперечные. Скорость этих волн разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн 5км/с, а скорость продольных волн - 10км/с.

    Регистрацию и запись колебаний земной поверхности, вызанных сейсмическими волнами, осуществляют с помощью приборов - сейсмографов. Распространяясь от очага землетрясения, первыми на сейсмическую станцию приходят продольные волны, а спустя некоторое время - поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Чтобы узнать точнее, где он находится, используют данные нескольких сейсмических станций.

    Ежегодно на земном шаре регистрируют сотни тысяч землетрясений. Подавляющее большинство из них относится к слабым, однако время от времени наблюдаются и такие. которые нарушают целостность грунта, разрушают здания и ведут к человеческим жертвам.

    Интенсивность землетрясений оценивается по 12-бальной шкале.


    1948 год - г. Ашхабад -землетрясение 9-12 баллов
    1966 год - г. Ташкент - 8 баллов
    1988 год - г. Спитак - погибло несколько десятков тысяч человек
    1976 год - Китай -число жертв сотни тысяч человек

    Противостоять разрушительным последствиям землетрясений возможно только путем строительства сейсмостойких зданий. Но в каких районах Земли случится следующее землетрясение?

    Предсказание землетрясений - сложнейшая задача. Решением этой задачи заняты многие научно-исследовательские институты многих стран мира. Исследование сейсмических волн внутри нашей Земли позволяет изучить глубинное строение планеты. Кроме того, сейсмическая разведка помогает обнаруживать места, благоприятные для скопления нефти и газа. Сейсмические исследования проводятся не только на Земле, но и на других небесных телах.

    В 1969 году американские астронавты разместили сейсмические станции на Луне. Ежегодно они регистрировали от 600 до 3000 слабых лунотрясений. В 1976 году с помощью космического корабля "Викинг" (США) сейсмограф был установлен на Марсе..

    СДЕЛАЙ САМ

    Волны на бумаге.

    С помощью звучащей трубки можно поставить немало опытов.
    Если, например, на мягкую подложку, лежащую на столе, положить лист плотной светлой бумаги, сверху насыпать слой кристаллов марганцовки, посредине листа вертикально поставить стеклянную трубку и возбудить в ней трением колебания, то при появлении звука кристаллы марганцовки придут в движение и образуют красивые линии. Трубка должна лишь слегка касаться поверхности листа. Появляющийся на листе рисунок будет зависеть от длины трубки.

    Трубка возбуждает колебания в бумажном листе. В листе бумаги образуется стоячая волна, которая является результатом интерференции двух бегущих волн. От конца колеблющейся трубки возникает круговая волна, которая без изменения фазы отражается от края бумаги. Эти волны когерентны и интерферируют, распределяя на бумаге кристаллики марганцовки в причудливые узоры.

    ОБ УДАРНОЙ ВОЛНЕ

    В своей лекции "О корабельных волнах" лорд Кельвин рассказывал:
    "...одно открытие фактически сделано лошадью, ежедневно тащившей лодку по канату между Глазго
    и Ардроссаном. Однажды лошадь понеслась, и возница, будучи наблюдательным человеком, заметил, что, когда лошадь достигла определенной скорости, тянуть лодку стало явно легче
    и позади нее не осталось волнового следа".

    Объяснение этого явления заключается в том, что скорость лодки и скорость волны, которую возбуждает лодка в реке, совпали.
    Если бы лошадь побежала еще быстрее (скорость лодки стала бы больше скорости волны),
    то за лодкой возникла бы ударная волна.
    Ударная волна от сверхзвукового самолета возникает точно так же.