N2 какой газ. Что такое азот и для чего используется




Азо́т - элемент главной подгруппы пятой группы второго периода периодической системы химических элементов , с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот (CAS-номер: 7727-37-9) - достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N 2), из которого на три четверти состоит земная атмосфера.

История открытия

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.
Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным - не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.
Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.
В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.
В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент - инертный газ аргон).

Происхождение названия

Азо́т (от др.-греч. ἄζωτος - безжизненный, лат. nitrogenium), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.
Существует и иная версия. Слово «азот» придумано не Лавуазье и не его коллегами по номенклатурной комиссии; оно вошло в алхимическую литературу уже в раннем средневековье и употреблялось для обозначения «первичной материи металлов», которую считали «альфой и омегой» всего сущего. Это выражение заимствовано из Апокалипсиса: «Я есмь Альфа и Омега, начало и конец» (Откр.1:8-10). Слово составлено из начальных и конечных букв алфавитов трёх языков - латинского, греческого и древнееврейского, - считавшихся «священными», поскольку, согласно Евангелиям, надпись на кресте при распятии Христа была сделана на этих языках (а, альфа, алеф и зет, омега, тав - AAAZOTH). Составители новой химической номенклатуры хорошо знали о существовании этого слова; инициатор её создания Гитон де Морво отмечал в своей «Методической энциклопедии» (1786) алхимическое значение термина.
Возможно, слово «азот» произошло от одного из двух арабских слов - либо от слова «аз-зат» («сущность» или «внутреннюю реальность»), либо от слова «зибак» («ртуть»)..
На латыни азот называется «nitrogenium», то есть «рождающий селитру»; английское название производится от латинского. В немецком языке используется название Stickstoff, что означает «удушающее вещество».

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:
NH 4 NO 2 → N2 + 2H 2 O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).
Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.
Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.
Ещё один лабораторный способ получения азота - нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:
K 2 Cr 2 O 7 + (NH 4) 2 SO 4 = (NH 4) 2 Cr 2 O 4 + K 2 SO 4 (NH 4) 2 Cr 2 O 7 →(t) Cr 2 O 3 + N 2 + 4H 2 O

Самый чистый азот можно получить разложением азидов металлов:
2NaN 3 →(t) 2Na + 3N 2

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:
O 2 + 4N 2 + 2C → 2CO + 4N 2

При этом получается так называемый «генераторный», или «воздушный», газ - сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.
Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.
Один из лабораторных способов - пропускание аммиака над оксидом меди (II) при температуре ~700 °C:
2NH 3 + 3CuO → N 2 + 3H 2 O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Физические свойства

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н.у.).
В жидком состоянии (темп. кипения −195,8 °C) - бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.
При −209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

В садовой аптечке опытных садоводов-огородников обязательно присутствует кристаллический железный купорос, или сульфат железа. Как и многие другие химические препараты, он обладает свойствами, которые защищают садово-ягодные культуры от многочисленных болезней и насекомых-вредителей. В этой статье поговорим об особенностях использования железного купороса для обработки растений сада от болезней и вредителей и о других вариантах его применения на участке.

Были времена, когда понятий «дерево-сад», «семейное дерево», «коллекционное дерево», «мульти дерево» просто не существовало. И увидеть такое чудо можно было лишь в хозяйстве «мичуринцев» – людей, которым дивились соседи, заглядываясь на их сады. Там на одной яблоне, груше или сливе поспевали не просто сорта разных сроков созревания, но и разнообразных цветов и размеров. Отчаивались на такие опыты не многие, а лишь те, кто не боялся многочисленных проб и ошибок.

Климатические условия нашей страны, к сожалению, не подходят для выращивания многих культур без рассады. Здоровая и крепкая рассада – это залог качественного урожая, в свою очередь качество рассады зависит от нескольких факторов: Даже здоровые на вид семена могут быть заражены патогенами, которые длительное время сохраняются на поверхности семени, а после посева, попадая в благоприятные условия, активируются и поражают молодые и неокрепшие растения

В нашей семье очень любят помидоры, поэтому большинство грядок на даче отданы именно под эту культуру. Каждый год мы стараемся попробовать новые интересные сорта, и какие-то из них приживаются и становятся любимыми. Вместе с тем за много лет огородничества у нас уже сформировался набор любимых сортов, которые обязательны к посадке в каждом сезоне. Такие помидоры мы, шутя, называем сортами «специального назначения» - для свежиж салатов, сока, засолки и хранения.

Снег еще не успел полностью растаять, а беспокойные владельцы загородных участков уже спешат оценить фронт работ в саду. А заняться тут и правда, есть чем. И, пожалуй, самое главное, о чём необходимо подумать ранней весной – как защитить свой сад от болезней и вредителей. Опытные садоводы знают, что пускать на самотёк эти процессы нельзя, а промедление и откладывание на потом сроков обработки могут существенно снизить урожай и качество плодов.

Если вы самостоятельно готовите почвенные смеси для выращивания комнатных растений, то стоит присмотреться к относительно новому, интересному и, на мой взгляд, нужному компоненту - кокосовому субстрату. Все, наверное, видели хоть раз в жизни кокосовый орех и его «лохматую» покрытую длинными волокнами скорлупу. Из кокосовых орехов (на самом деле это костянка) делают много вкусных изделий, но вот скорлупа и волокна раньше были просто отходами производства.

Пирог с рыбными консервами и сыром - идея простого обеда или ужина для ежедневного или воскресного меню. Пирог рассчитан на небольшую семью из 4-5 человек с умеренным аппетитом. В этой выпечке есть сразу все - и рыба, и картошка, и сыр, и хрустящая корочка из теста, в общем, почти как закрытая пицца-кальцоне, только вкуснее и проще. Рыбные консервы могут быть любыми - скумбрия, сайра, горбуша или сардины, выбирайте по своему вкусу. Такой пирог также готовят с вареной рыбой.

Инжир, фига, смоковница - это всё названия одного и того же растения, которое у нас стойко ассоциируется со средиземноморской жизнью. Кто хоть раз пробовал на вкус плоды инжира, знает, какая это вкуснятина. Но, кроме нежного сладкого вкуса, они ещё и очень полезны для здоровья. И вот какая интересная деталь: оказывается, инжир - совершенно неприхотливое растение. К тому же, его с успехом можно выращивать на участке в средней полосе или в доме - в контейнере.

Вкусный крем-суп с морепродуктами готовится чуть меньше часа, он получается нежным и кремовым. Морепродукты выбирайте по своему вкусу и кошельку, это может быть и морской коктейль, и королевские креветки, и кальмары. Я готовила суп с крупными креветками и мидиями в раковинах. Во-первых, это очень вкусно, во-вторых, красиво. Если готовите для праздничного ужина или обеда, то мидии в раковинах и большие неочищенные креветки выглядят в тарелке аппетитно и симпатично.

Довольно часто сложности по выращиванию рассады томатов возникают даже у бывалых дачников. У кого-то вся рассада получается вытянутая и слабая, у кого-то - внезапно начинает падать и гибнет. Все дело в том, что в квартире трудно поддерживать идеальные условия для выращивания рассады. Сеянцам любых растений нужно обеспечить много света, достаточную влажность и оптимальную температуру. Что еще нужно знать и соблюдать при выращивании рассады томатов в квартире?

Сорта томатов серии «Алтайский» пользуются большой популярностью у огородников по причине своего сладкого нежного вкуса, больше напоминающего вкус фрукта, нежели овоща. Это крупные помидоры, вес каждого плода равняется в среднем 300 граммов. Но это не предел, есть томаты крупнее. Мякоть этих томатов характеризуется сочностью и мясистостью с незначительной приятной маслянистостью. Вырастить отличные томаты серии «Алтайский» можно из семян «Агроуспех».

Долгие годы алоэ оставалось самым недооцененным комнатным растением. И это не удивительно, ведь широкое распространение алоэ обыкновенного в прошлом столетии привело к тому, что о других видах этого удивительного суккулента все забыли. Алоэ – растение, в первую очередь, декоративное. И при правильном выборе вида и сорта способно затмить любого конкурента. В модных флорариумах и в обычных горшках алоэ – выносливое, красивое и удивительно долговечное растение.

Вкусный винегрет с яблоком и квашеной капустой - вегетарианский салат из сваренных и охлажденных, сырых, квашеных, солёных, маринованных овощей и фруктов. Название произошло от французского соуса из уксуса, оливкового масла и горчицы (vinaigrette). Винегрет появился в русской кухне не так давно, примерно в начале 19 века, возможно рецепт позаимствовали в австрийской или немецкой кухне, так как ингредиенты для австрийского селёдочного салата весьма похожи.

Когда мы мечтательно перебираем в руках яркие пакетики с семенами, то порой подсознательно уверены, что обладаем прототипом будущего растения. Мысленно выделяем ему место в цветнике и предвкушаем заветный день появления первого бутона. Однако покупка семян далеко не всегда гарантирует, что в конечном итоге вы получите желанный цветок. Мне хотелось бы обратить внимание на причины, вследствие которых семена могут не взойти или погибнуть в самом начале прорастания.

АЗОТ , N (франц. Az), химический элемент (Nitrogenium - от nitrum, селитра, «образующий селитру»; по-немецки - Stickstoff «удушающий газ», по-франц. - Azote, от греч. α - отрицание, ξωη - жизнь, безжизненный); атомный вес 14,009, порядковый номер 7.

Физические свойства . D чистого азота (при D воздуха = 1) 0,9674; но обычно мы имеем дело с азотом из воздуха, с содержанием 1,12% аргона, D такого азота 0,9721; вес 1 л чистого азота при 0°С и 760 мм - 1,2507 г, вес 1 л «атмосферного» азота - 1,2567 г. Растворимость азота в воде меньше растворимости кислорода. 1 л воды при 760 мм и 0°С растворяет 23,5 см 3 азота (растворимость О 2 - 48,9 см 3), при 20°С - 15,4 см 3 азота (растворимость О 2 - 31,0 см 3). Древесный уголь свежепрокаленный поглощает, по Дьюару, в 1 см 3 при 0°С всего 15 см 3 азота, при -185°С он поглощает 155 см 3 азота (объемы перечислены на 0°С и 760 мм). Температура критическая -147°С при критическом давлении в 33 atm., или 25 м ртутного столба, температура кипения при 760 мм равна -195°,67±0°,05, а температура плавления при 88 мм±4 мм равна - 210°,52±0°,2. Коэффициент расширения азота при 1 atm равен 0,003667; удельная теплота при 20°С равна 0,249, а для температурного интервала (0-1400)°С, в среднем, 0,262; отношение с р /с η = 1,40, как и для О 2 . Жидкий азот бесцветен, подвижен как вода, хотя легче последней. Удельный вес при температуре кипения и 760 мм - 0,7914, при -184°С - 0,7576, при -195,5°С - 0,8103 и при -205°С - 0,8537; близ точки застывания - 0,8792 (цифры колеблются в зависимости от содержания Аr). Удельная теплота жидкого азота между -196°С и -208°С - 0,430; теплота испарения 1кг жидкого азота при температуре кипения -195°,55 равна 47,65 Cal. Из 1 л жидкого азота при испарении, при атмосферном давлении и 0°С, 14°С и 27°С, образуется соответственно: 640, 670 и 700 л газообразного азота. Жидкий азот немагнитен и не проводит электричества.

Химические свойства азота в значительной степени определяются его крайней инертностью при обыкновенных условиях температуры и давления, объясняющеюся устойчивостью молекул N 2 . Только металл литий соединяется с азотом при невысокой температуре, выделяя при этом 69000 cal и образуя нитрид лития NLi 3 . Нитрид Ва образуется при 560°С и имеет формулу Ba 3 N 2 ; о других нитридах. Как с кислородом, так и с водородом азот соединяется лишь при высокой температуре, причем реакция с кислородом эндотермична, а с водородом экзотермична. Валентность азота определяется строением его атома по Бору. При удалении с наружного кольца всех пяти электронов азот становится пятизарядным положительным ионом; при пополнении верхнего кольца тремя электронами до предельного числа - восьми - атом азота проявляется как трехзарядный электроотрицательный ион. Состояние азота в аммонийных соединениях может быть легко выяснено теорией комплексных соединений. Азот дает целый ряд соединений с кислородом и с галоидами (последние соединения являются вследствие сильной эндотермичности своего образования чрезвычайно взрывчатыми). С водородом азот дает соединения: аммиак и азотистоводородную кислоту. Кроме того, известны: соединение азота с водородом - гидразин и с водородом и кислородом - гидроксиламин.

Применение азота . Газообразный азот имеет в качестве инертного газа применение в медицине для иммобилизации пораженных туберкулезом участков легких (операция Pneumotorax), для защиты металлов от химического действия на них активных газов и вообще в тех случаях, когда необходимо предотвратить какую-нибудь нежелательную химическую реакцию (например, для наполнения лампочек накаливания, для надувания автомобильных резиновых шин, на которые при высоком давлении разрушающим образом действует воздух, для сохранения красок ценных картин, помещаемых в наполненных азотом герметических сосудах, для предотвращения пожарной опасности при переливке бензина и других горючих жидкостей, и т. п.). Но самое важное техническое применение азота имеет в процессе получения синтетического аммиака из элементов.

При оценке свойств азота и его исключительного значения в общей экономике органической природы и общественной жизни человека следует резко различать азот свободный от азота связанного , т. е. уже вступившего в химическое соединение с каким-нибудь другим элементом, гл. обр. с кислородом, водородом и углеродом . Азот свободный при условиях температуры и давления, господствующих на поверхности земного шара, представляет собою крайне инертный элемент. Мышь в классическом опыте Лавуазье погибала в воздухе, лишенном кислорода, т. е. в почти чистом азоте. Между тем связанный азот является как бы носителем жизни, ибо все без исключения живые существа, будь это растения или животные, выстраивают свой организм обязательно при участии т. н. белковых веществ, неизбежно заключающих в своем химическом составе азот (белки содержат до 16% азота). Процесс перехода от свободного азота к связанному и обратно представляет собою величайшей важности процесс природы и грандиознейшую проблему сельского хозяйства, а в последнее время и индустрии. Свободный азот содержится в смеси с другими газами в атмосфере в необъятном количестве, составляя около 4 / 5 по объему (75,51 весовых %) от всей атмосферы и окутывая земной шар воздушным покровом, постепенно все более и более разрежающимся, достигающим в высоту десятков км. Над одним гектаром земной поверхности содержится азота столько, что, если бы он был в связанном состоянии, его хватило бы для обеспечения всей живой природы и потребностей человечества на 20 лет (А. Э. Мозер). Но свободный азот лишь с громадным усилием м. б. понужден к соединению с другими элементами, и притом не только в тех случаях, когда это соединение происходит эндотермически (как, например, при образовании кислородных соединений азота), но и в тех случаях, когда соединение азота с другим элементом сопровождается выделением энергии и является реакцией экзотермической (соединение азота с водородом).

Лишь в исключительных случаях, например, с литием, соединение азота протекает в обыкновенных условиях температуры и давления легко. Поэтому в общем балансе связанного азота в природе приходится констатировать круговорот . Растения поглощают связанный азот в виде растворимых солей из почвы и изготовляют белки; животные пользуются при обмене веществ готовыми азотистыми соединениями за счет поглощенной растительной пищи, выделяя соединения связанного азота, неусвоенные, а также образовавшиеся в результате распада в их организме белковых веществ - в экскрементах и в моче, и, наконец, внося при своей гибели весь свой организм в общий баланс связанного азота в природе для дальнейших процессов минерализации белковых и других азотистых веществ, происходящих в почве. В этих последних процессах громадная роль остается за микроорганизмами почвы, в результате жизнедеятельности которых сложные азотистые органические соединения превращаются в простейшие соли азотной кислоты, которая, в свою очередь, образуется в результате окисления в почве аммиачных соединений как более ранней стадии разрушения белковых веществ и продуктов ид распада. Принимая во внимание чрезвычайную инертность свободного азота, неспособного самостоятельно вступать в соединения, и, с другой стороны, потери или случаи глубокого разрушения азотистого соединения до свободного азота (например, в результате жизнедеятельности денитрифицирующих почвенных бактерий, при сжигании каменного угля , дров и торфа, при вымывании из почвы азотистых соединений дождем в реки и моря, при спуске в реки отбросов больших городов и т. д.), - можно было бы считать неизбежным последствием всего этого постепенное обеднение природы связанным азотом и в результате гибель органической жизни на земле, если бы в общее русло круговорота связанного азота не вливались бы некоторые процессы, пополняющие указанную убыль связанного азота в природе. Таким естественным источником связанного азота в природе являются атмосферные осадки, приносящие в почву окислы азота, образовавшиеся в атмосфере при электрических разрядах, которые понуждают некоторое количество атмосферного азота соединиться с кислородом (дождевая вода содержит около 0,00001% связанного азота). Можно подсчитать, что этим путем в почву земного шара ежегодно вносится до 400 млн. т связанного азота. Кроме того, Бертело удалось установить, что в почве, без внесения в нее новых запасов азотистых соединений, содержание азота с течением времени повышается благодаря жизнедеятельности некоторых видов бактерий. Впоследствии эти бактерии были выделены в чистых культурах, а именно: анаэробная бактерия маслянокислого брожения (Clostridium pasteuri- anum) и аэробная бактерия (Azotobakter Виноградского, которая может обогатить почву на 48 кг в год на 1 га). Кроме этих свободно живущих в почве бактерий, было обнаружено в клубеньковых наростах некоторых растений семейства бобовых (Leguminosae) присутствие симбиотически связанных с ними бактерий (Bacillus radicicola), также способных усваивать свободный атмосферный азот и передавать этот связанный ими азот своему «растению-хозяину». Как известно, это свойство бобовых растений (лупина, вики, сераделлы и др.) широко применяется для обогащения почвы азотистыми веществами, являясь своеобразным методом удобрения почвы для последующих посевов хлебных злаков на участке с запаханными и разложившимися в почве, предварительно взращенными на ней, удобрительными растениями. Однако указанные естественные источники пополнения связанного азота в природе никоим образом не могут восполнить его убыли, в особенности в виду громадного расточения связанного азота во всех процессах разрушения азотистых соединений в топливе, а также при использовании азотистых взрывчатых веществ. Принимая во внимание потребности в азотистой пище населения земли, исчисляемого в 1,6 млрд. чел., и ежегодный прирост населения земли в одних только странах, располагающих статистическими сведениями, в 4 млн. чел. или в 400 млн. в столетие, эту убыль связанного азота в природе приходится считать весьма существенной. Вильям Крукс еще в 1898 г. забил тревогу, предсказывая гибель человечества от голода в ближайшем будущем, когда, по его расчетам, должны будут иссякнуть единственные на земном шаре богатые месторождения чилийской селитры - того ресурса связанного азота, который гл. обр. должен был восполнить насущную нужду сельского хозяйства в азотных удобрениях, а вместо того хищнически расточался для военных целей, т. к. большинство взрывчатых веществ изготовлялось при действии азотной кислоты, полученной из чилийской селитры. Действительно, хотя Крукс преуменьшил несколько запасы селитры в Чили, однако и по последним геологическим подсчетам, если даже принять только довоенную норму выработки чилийской селитры (2750000 т селитры с содержанием 400000 т связанного азота), ее запасов (600 млн. т селитры с содержанием 30 млн. т связанного азота) не может хватить более, чем на 150-200 лет (см. Селитра). Однако запасы чилийской селитры отнюдь не являются единственным источником, из которого человечество черпает свои пополнения необходимого для его питания и промышленности связанного азота. По данным Интернационального агрикультурного института в Риме, вычисленным на основании сведений об урожаях всех стран света, мировое потребление связанного азота на 1924 г. определяется количеством около 7000000 т связанного азота; из них человек сумел выработать и вернуть природе лишь около 1 / 6 части, т. е. около 1200000 т связанного азота. На долю чилийской селитры в этом количестве пришлось в 1924 г. всего 420000 т. Остальное количество связанного азота поступило в общую экономику природы в значительной степени за счет таких же естественных ресурсов связанного азота в природе, как и селитра, требующих, однако, со стороны человека некоторой обработки. К числу таких естественных ресурсов связанного азота относятся мировые запасы каменного угля и торфа. Каменный уголь содержит даже в плохих сортах от 0,5 до 2% связанного азота. Те же сорта, которые идут для производства кокса и светильного газа, содержат обыкновенно от 1,2 до 1,9%, в среднем 1,3% связанного азота. По современным геологическим данным, мировые запасы каменного угля следует оценить приблизительной цифрой около 8000 млрд. т. Считая содержание связанного азота в угле в 1%, мы получим содержание связанного азота в мировом запасе каменного угля в 80 млрд. т, т. е. в 2000 раз больше, чем содержание связанного азота в запасах чилийской селитры. Это количество могло бы обеспечить потребность человечества в связанном азоте на 6000 лет, если бы при использовании угля можно было утилизировать весь заключающийся в нем связанный азот. Довоенная ежегодная выработка каменного угля была равна 1350 млн. т с содержанием связанного азота (1,3%) в 17 млн. т (соответственно 85 млн. т азотнокислого аммония, на сумму более 25 млрд. фр.). Однако почти все это количество связанного азота выпускалось в воздух в качестве свободного азота при сжигании каменного угля в печах заводов, паровозов, в домашних печах и т. д. Только примерно 1 / 50 ч. всего этого количества улавливалась азотной промышленностью и служила для получения сернокислого аммония, который является и поныне самым значительным, наравне с селитрой, ресурсом для искусственных азотных удобрений (Matignon). В среднем из каменного угля, подвергающегося коксованию или газации, добывается 12 кг сернокислого аммония на т. Утилизация связанного азота из торфа пока еще не представляет собою крупного фактора в экономике связанного азота. Т. о. использование каменноугольного азота только отчасти сглаживает остроту недостачи связанного азота для целей сельского хозяйства и промышленности, но отнюдь не является разрешением азотной проблемы в целом. Окончательное разрешение этой проблемы принесли с собой наука и техника, гл. обр. в продолжение текущего столетия, осуществив фиксацию атмосферного азота техническим путем. Эта фиксация осуществляется главным образом тремя основными методами: 1) путем сжигания азота воздуха при действии вольтовой дуги, с получением окислов азота и азотной кислоты; этот метод, вследствие эндотермичности реакции соединения N 2 + О 2 , требует затраты значительных количеств тепла, высокого напряжения, и является рентабельным только при наличии дешевой гидроэлектрической энергии; 2) путем присоединения азота при высокой температуре электрической печи к карбиду кальция, с образованием цианамида кальция; последний либо непосредственно идет для целей удобрения, либо при действии воды образует аммиак, нейтрализуемый до сернокислого или азотнокислого аммония; 3) путем непосредственного соединения атмосферного азота с водородом, с образованием синтетического аммиака; этот способ (Габер-Боша) является, несомненно, величайшим достижением химической технологии за истекшую часть 20 в. и одним из грандиознейших завоеваний науки и техники в истории человечества.

Несмотря на то, что для повышения урожая необходимо внесение в почву также и других удобрений - фосфорных и калийных, все же именно азотные удобрения играют преобладающее значение в экономике сельского хозяйства. Если, например, в мясе фосфорного ангидрида и окиси калия содержится по 0,4%, то количество связанного азота в том же продукте достигает около 3%, т. е. на 30 ч. связанного азота в мясе приходится лишь по 4 ч. Р 2 О 6 и К 2 О. При этом цены указанных трех видов искусственных удобрений в 1913 г., при нормальных, сравнительно, условиях довоенного времени, выражались следующими цифрами: за 1 кг связанного азота - 1,5 фр., а за 1 кг К 2 О или Р 2 О 5 - по 0,4 фр. за каждый. Т. о. мы можем считать, что азотные удобрения дают экономический эффект в 32 раза более значительный по сравнению с эффектом остальных двух классов удобрительных туков. Насколько значительна роль азотных удобрений, видно из того факта, что внесение в почву искусственных азотных удобрений вызывает, при прочих равных условиях, прирост урожая на 1 т внесенного связанного азота: для зерновых хлебов - в 20 т, для картофеля - в 200 т и для свеклы - в 300 т. Для количественной оценки роли вносимых в экономику сельского хозяйства азотистых удобрительных туков интересно хотя бы приблизительно подсчитать общий мировой капитал связанного азота, участвующий в органической жизни нашей планеты. При поверхности суши земного шара в 135000000 км 2 и толщине слоя пахотной земли в 0,4 м, мы можем оценить (приняв плотность почвы за единицу) весь капитал всей плодородной почвы земли в 54 млрд. т. Среднее содержание связанного азота в почве не превышает 0,1%. Уменьшив весь расчет до 3 / 4 вследствие учета пустынь, ледников, скал и других неплодородных почв, не содержащих азота, мы можем оценить общий тоннаж связанного азота в почве всего земного шара приблизительно в 40 млрд. т, т. е. в половину всех запасов связанного азота, имеющихся в каменном угле, утилизация которых возможна лишь в самой ограниченной степени.

Потребность мирового сельского хозяйства в азотных удобрительных туках характеризуется следующими цифрами (Partington, The Nitrogen Industry):

Мировое потребление чилийской селитры в военные годы мало показательно, ибо на нем отразились факторы блокады, затрудненного транспорта и пр.

Мировое производство связанного азота достигло 1200000 т в год, из которых: около 30% - 360000 т было выделено при коксовании и газификации из каменного угля, около 35% - 420000 т было выработано в виде чилийской селитры, около 35% - 420000 т было произведено путем фиксации атмосферного азота. В самые последние годы это соотношение несколько изменилось в смысле увеличения выработки селитры (до 36,5%) за счет уменьшения утилизации каменноугольного азота (около 30%).

Из всей продукции связанного азота путем фиксации атмосферного азота в свою очередь 60% д. б. отнесено к синтетическому аммиаку, 30% - к цианамиду и только 10% - к норвежской синтетической селитре. Особенно быстрое развитие азотной промышленности наблюдается в Германии, что характеризуется следующими цифрами: всего в Германии азотных продуктов было произведено: в 1915 г. - 64000 т связанного азота, в 1919 г. - 132000 т, в 1920 г. - 190000 т, в 1922 г. - 238000 т (в эти количества не входит ввезенная чилийская селитра). Следующая диаграмма наглядно рисует степень удовлетворения на 1925 г. мировой потребности в связанном азоте со стороны добывающей и обрабатывающей азотной промышленности.

Из всего количества добытого связанного азота 83% (около 1000000 т) было израсходовано для удобрения, вследствие чего был получен прирост сельскохозяйственных продуктов, эквивалентный 20000000 т (1,2 млрд. пудов) пшеницы, т. е. почти в два раза большего количества, чем весь хлебный годовой экспорт России в довоенные годы. Развитие синтетической азотной промышленности иллюстрируют следующие цифры:

По отдельным странам мировая производительная способность заводов, вырабатывающих соединения связанного азота, в 1925 г. подразделяется следующим образом (в т):

Т. о. в технической фиксации атмосферного азота по тому или иному методу участвуют: Германия на 60%, Франция - 14%, Англия - 2,5%, Италия - 4,3%, Япония - 1,9% и США - 18%. Но синтетическая азотная промышленность развивается чрезвычайно быстро. Уже в настоящее время частью заканчивается постройкой, а частью находится в действии целый ряд новых установок. Когда все они начнут функционировать, то общая продукция синтетического связанного азота будет еще больше.

Преобладающее значение и наибольшие перспективы из всех синтетических методов фиксации атмосферного азота следует признать за способами получения синтетического аммиака. Главным преимуществом этого пути фиксации атмосферного азота является весьма незначительная затрата энергии на его производство, ибо энергия, в виду экзотермичности процесса, д. б. затрачена, при рациональном использовании теплоты самой реакции, исключительно на компрессию газов до давления в 200 и более atm. Parsons (JournalofInd. a. Eng. Chem., v. 9, p. 839, 1917) приводит интересный подсчет расходуемой энергии на тонну связанного азота при разных методах:

Современное состояние синтетической аммиачной промышленности (на 1925 г.) характеризуется следующими цифрами:

Т. о. 93% всего синтетического аммиака производится в Германии. Когда все установки по фиксации атмосферного азота будут закончены, то количество производимого синтетического аммиака будет приблизительно равно, в переводе на тонну связанного азота:

В общем все виды технической фиксации атмосферного азота (аммиак, дуговой процесс и цианамидный метод) смогут дать ежегодную продукцию, вероятно несколько меньшую указанной выше, а именно:

В СССР выработано в 1924 г. около 7400 т концентрированной аммиачной воды с содержанием около 400 т связанного азота, кроме того было импортировано значительное количество чилийской селитры с содержанием 1700 т связанного азота. О потребностях СССР можно получить представление из следующих цифр. Во время войны Россией было израсходовано на производство взрывчатых веществ около 330000 т селитры с 48000 т связанного азота. Потребность в азотистых удобрениях для культур сахарной свекловицы, хлопка и других технических растений исчисляется десятками тысяч тонн, а потребность в удобрениях для крестьянского хозяйства - многими сотнями тыс. т связанного азота. Недостаток удобрений вызывает слабый урожай в СССР, в среднем с 1 га 6,5 ц хлеба и 98 ц свекловицы, против 24,5 ц хлеба и 327,5 ц свекловицы в странах Западной Европы, применяющих азотные и другие искусственные удобрения (Мозер). В настоящее время в СССР принимаются решительные меры для обеспечения развития азотной промышленности. См. .

АЗОТ (Nitrogenium, N) - химический элемент V группы периодической системы элементов Д. И. Менделеева, атом, номер 7, атомная масса 14,0067. Открыт Резерфордом (D. Rutherford) в 1772 году. Известны следующие изотопы азота (табл.).

В различных соединениях азота обладает переменной валентностью, которая может быть равна - 3, +1, +2, +3, +4 и +5.

Распространение в природе. Общее содержание азота в земной коре составляет около 0,016 вес. %. Основная его масса находится в воздухе в свободном, молекулярном виде - N 2 . Сухой воздух содержит в среднем 78,09% по объему (или 75,6% по весу) свободного азота. В относительно малых количествах свободный азот находится в растворенном состоянии в водах океанов. Азот в виде соединений с другими элементами (связанный азот) входит в состав всех растительных и животных организмов.

Жизнь неразрывно связана со свойствами легко изменяющихся сложных азотистых веществ - белков. В состав белков в среднем входит 15-17% азота. При отмирании организмов сложные азотистые соединения их в процессе круговорота азота превращаются в более простые соединения: аммиак, аммонийные соли, нитриты и нитраты. Все соединения азота, как органические, так и неорганические, содержащиеся в почве, объединяются под названием «азот почвы».

Получение азота

В лабораториях чистый азот получают обычно нагреванием концентрированного водного раствора азотисто-кислого аммония или раствора смеси хлористого аммония с азотистокислым натрием:

NH 4 Cl + NaNO 2 = N 2 + NaCl + 2H 2 O.

В технике азота с примесью до 3% аргона получают фракционированной перегонкой жидкого воздуха.

Свойства азота

В свободном состоянии азот представляет собой бесцветный газ без запаха и вкуса, состоящий из двухатомных молекул - N 2 . Вес 1 л его при t° 0° и давлении 760 мм рт. ст. равен 1,2506 г, t° кип - 195,8°, t° пл - 209,86°; плотность жидкого А. 0,808 (при t° - 195,8°), твердого - 1,026 (при t ° - 255°). В 1 мл воды при t° 0°, 20° и 38° и парциальном давлении азота, равном 760 мм, растворяется соответственно 0,0235, 0,0154 и 0,0122 мл азота.

Растворимость азота в крови меньше; она составляет при t° 38° 0,0110 мл А. При малых парциальных давлениях азота его растворимость в крови несколько больше, чем в воде.

В обычных условиях азот физиологически инертен, но при вдыхании воздуха, сжатого до 2-2,5 атм, наступает состояние, называемое азотным наркозом, сходное с опьянением алкоголем. Это явление может иметь место при водолазных работах (см.) на глубине нескольких десятков метров. Для предупреждения возникновения подобного состояния иногда пользуются искусственными газовыми смесями, в которых азот заменен гелием или каким-либо другим инертным газом. При резком и значительном снижении парциального давления азота растворимость его в крови и тканях настолько снижается, что часть его выделяется в виде пузырьков, что является одной из причин возникновения кессонной болезни, наблюдающейся у водолазов при быстром их подъеме на поверхность и у летчиков при больших скоростях взлета самолетов в верхние слои атмосферы (см. Декомпрессионная болезнь).

Применение азота

Свободный азот как химически неактивный газ применяется в лабораторной практике и технике во всех случаях, когда наличие в окружающей атмосфере кислорода недопустимо или нежелательно, например при проведении биологического эксперимента в анаэробных условиях, при переливании больших количеств горючих жидкостей (для предотвращения пожаров) и так далее. Основная же масса свободного азота используется в промышленности для синтеза аммиака, цианамида кальция и азотной кислоты, которые являются исходными веществами для получения азотных удобрений, взрывчатых веществ, красок, лаков, фармацевтических препаратов и другое.

Соединения азота

Свободный азот при обычных температурах химически инертен; при высокой температуре вступает в соединение со многими элементами.

С водородом азот образует ряд соединений, основными из которых являются следующие:

3. Азотистоводородная кислота (HN 3) - бесцветная, кипящая при t° 37° жидкость с резким запахом. Взрывается с большой силой при нагревании. В водных растворах устойчива и проявляет свойства слабой кислоты. Соли ее - азиды - неустойчивы и взрываются при нагревании или ударе. Азид свинца Pb(N 3) 2 применяется в качестве детонатора. Вдыхание паров HN3 вызывает сильную головную боль и раздражение слизистых оболочек.

С кислородом азот образует пять окислов.

1. Закись азота, или веселящий газ (N 2 O), - бесцветный газ, получают при нагревании (выше 190°) азотнокислого аммония:

NH 4 NO 3 = N 2 O + 2H 2 O. В смеси с кислородом закись азота применяют как слабый наркотик, вызывающий состояние опьянения, эйфории, притупление болевой чувствительности. Применяется для ингаляционного наркоза (см.).

2. Окись азота (NO) - бесцветный газ, плохо растворимый в воде; в лабораториях получают действием азотной кислоты средней концентрации на медь:

8HNO 3 + 3Cu = 2NO + 3Cu (NO 3) 2 + 4H 2 O, в технике - продуванием воздуха через пламя электрической дуги. На воздухе мгновенно окисляется, образуя красно-бурые пары двуокиси азота; вместе с последней вызывает отравления организма (см. ниже - Профессиональные вредности соединений азота).

3. Двуокись азота (NO 2) - красно-бурый газ, имеющий характерный запах и состоящий из собственно двуокиси А. и ее бесцветного полимера - четырехокиси азота (N 2 O 4) - азотноватого ангидрида. Двуокись азота легко сгущается в красно-бурую жидкость, кипящую при t° 22,4° и затвердевающую при t° - 11° в бесцветные кристаллы. Растворяется в воде с образованием азотистой и азотной кислот:

2NO 2 + H 2 O = HNO 2 + HNO 3 .

Является сильным окислителем и опасным ядом. Двуокись азота образуется при получении азотной кислоты, при реакциях нитрования, травлении металлов и тому подобное и поэтому представляет собой профессиональный яд.

4. Трехокись азота, ангидрид азотистой к-ты (N 2 O 3), - темно-синяя жидкость, затвердевающая при t° - 103° в голубые кристаллы. Устойчива лишь при низких температурах. С водой образует слабую и непрочную азотистую кислоту, со щелочами - соли азотистой кислоты - нитриты.

5. Пятиокись азота, ангидрид азотной к-ты (N 2 O 5), - бесцветные призматические кристаллы, имеющие плотность 1,63, плавящиеся при t° 30° в желтую, слегка разлагающуюся жидкость; разложение усиливается при нагревании и при действии света. Температура кипения около 50°. С водой образует сильную, довольно устойчивую азотную кислоту, со щелочами - соли этой кислоты - нитраты.

При нагревании азот непосредственно соединяется со многими металлами, образуя нитриды металлов, например Li3N, Mg 3 N 2 , AlN и др. Многие из них разлагаются водой с образованием аммиака, например

Mg 3 N 2 + 6H 2 O = 2NH 3 + 3Mg(OH) 2 .

Азот входит в состав большого числа органических соединений, среди которых особое значение имеют алкалоиды, аминокислоты, амины, нитросоединения, цианистые соединения и наиболее сложные природные соединения - белки.

Фиксация атмосферного азота. В течение долгого времени исходными веществами для получения разнообразных соединений азота, необходимых для сельского хозяйства, промышленности и военного дела, служили природная чилийская селитра и аммиак, получаемый при сухой перегонке каменного угля. С истощением залежей чилийской селитры человечеству грозил «азотный голод». Проблема азотного голода была разрешена в конце 19 и начале 20 века путем разработки ряда промышленных методов фиксации атмосферного азота. Наиболее важным из них является синтез аммиака по схеме:

Определение азота

Для определения свободного азота анализируемый газ приводят в контакт с нагретым магнием; при наличии азота образуется нитрид магния, который с водой дает аммиак.

Круговорот азота

Азот является важнейшим биогенным элементом, необходимым для построения белков и нуклеиновых кислот. Однако азот атмосферы недоступен для животных и большей части растений. Поэтому в круговороте азота первостепенное значение имеет процесс его биологической фиксации (фиксация молекулярного азота атмосферы). Азотфиксация осуществляется азотфиксирующими микроорганизмами, например бактериями из рода Rhizobium, или клубеньковыми бактериями, живущими в симбиозе (см.) с бобовыми растениями (горох, люцерна, соя, люпин и другие), на корнях которых образуются клубеньки, содержащие бактерии, способные усваивать молекулярный азот. К симбиотическим азотфиксаторам относятся также некоторые актиномицеты, живущие в корневых клубеньках ольхи, лоха, облепихи и так далее. Активными азотфиксаторами являются также некоторые свободноживущие микроорганизмы, обитающие в почве, пресных и соленых водоемах. Это анаэробная спороносная бактерия клостридиум (Clostridium pasteurianum), открытая С. Н. Виноградским, аэробная бактерия - азотобактер (см. Azotobacter). Способностью усваивать молекулярный азот обладают, кроме того, микобактерии, некоторые виды сине-зеленых водорослей (Nostoc, Anabaena и др.), а также фотосинтезирующие бактерии.

Наибольшее значение в обогащении почвы азотом имеют клубеньковые бактерии. В результате деятельности этих бактерий в почву вносится 100-250 кг/га за сезон; сине-зеленые водоросли на рисовых полях фиксируют до 200 кг/га азота в год. Свободноживущие азотфиксирующие бактерии связывают несколько десятков килограммов азота на один гектар почвы.

С. Н. Виноградский впервые (1894) высказал предположение о том, что первоначальным продуктом процесса биологической азотфиксации является аммиак. В настоящее время это предположение полностью подтверждено. Доказано, что превращение N 2 в NH 3 представляет собой ферментативный процесс. Фермент, осуществляющий этот процесс (нитрогеназа), состоит из двух белковых компонентов, активен только в отсутствие кислорода, а сам процесс происходит за счет энергии аденозинтрифосфорной кислоты (АТФ). Растения, а также микроорганизмы затем превращают неорганический аммонийный азот в его органические соединения (аминокислоты, белки, нуклеиновые кислоты и так далее), и в таком виде он становится доступным для животных и человека, включаясь в обменные процессы, протекающие в их организмах. Органический азот животных и растений попадает в почву (с выделениями животных или продуктами их разложения) и перерабатывается обитающими там различными червями, моллюсками, нематодами, насекомыми, а также микроорганизмами. Микроорганизмы почвы - аммонификаторы (гнилостные бактерии, некоторые актиномицеты и грибы) - минерализуют в свою очередь органический азот почвы (тела животных и растений, органические удобрения, гумус) до аммония. Аммонификация - комплекс ферментативных процессов, протекающих в основном в два этапа: гидролиз белков и нуклеиновых кислот до аминокислот и азотистых оснований и последующее разложение этих соединений до аммиака. Образовавшийся аммиак нейтрализуется, реагируя с содержащимися в почве органическими и неорганическими кислотами. При этом происходит образование аммонийных солей. Аммонийные соли и аммиак в свою очередь подвергаются нитрификации под воздействием нитрифицирующих бактерий (открытых в 1890 году С. Н. Виноградским) с образованием нитратов и нитритов.

Процессы нитрификации и аммонификации обеспечивают растения легко усваиваемыми соединениями азота. Аммонийные соли и нитраты усваиваются растениями и микроорганизмами, превращаясь в азотные органических соединений. Однако часть азота превращается в почве в молекулярный азот в результате процесса денитрификации, осуществляемого живущими в почве микроорганизмами - денитрификаторами (рис.). Денитрифицирующие бактерии широко распространены в природе, встречаясь в большом количестве в почве, навозе и в меньшем - в воде рек, озер и морей. Наиболее типичные денитрификаторы - подвижные, грамотрицательные палочки. К ним относятся Bacterium fluorescens, В. denitrificans, В. pyocyaneum и другое.

Процесс денитрификации приводит к потере доступного растениям азота, однако постоянно идущий процесс азотфиксации в какой-то степени компенсирует эти потери, а в известных условиях (в частности, при богатстве почвы безазотистыми органическими веществами) и значительно обогащает почву связанным азотом.

В целом совокупное действие процессов азотфиксации, нитрификации и денитрификации имеет большое биогеохимическое значение, способствуя сохранению динамического равновесия между содержанием молекулярного азота в атмосфере и связанного азота почвы, растительного и животного мира.

Круговорот азота, таким образом, играет важнейшую роль в поддержании жизни на Земле.

Профессиональные вредности соединений азота

К числу наиболее вредных в профессиональном отношении соединений азота относятся азотная кислота (см.), аммиак (см.), аминосоединения (см. Амины) и амидосоединения (см. Амиды), а также смеси окислов азота, или нитрогазов (N 2 O, NO, NO 2 , N 2 O 4 и N 2 O 5). Последние образуются при производстве и применении азотной кислоты (в процессе взаимодействия ее с различными металлами или органическими веществами), в процессе термического окисления азота воздуха при электро- и газосварке, работе дизельных и карбюраторных двигателей, сжигании топлива в мощных котельных, а также при взрывных работах и так далее. Общий характер действия нитрогазов на организм зависит от содержания в газовой смеси различных окислов азота. В основном отравление протекает по раздражающему, или нитритному,типу действия. При контакте окислов азота с влажной поверхностью легких образуются азотная и азотистая кислоты, которые поражают легочную ткань, вызывая отек легких. Одновременно в крови образуются нитраты (см.) и нитриты (см.), непосредственно действующие на кровеносные сосуды, расширяя их и вызывая снижение кровяного давления. Нитриты, взаимодействуя с оксигемоглобином, превращают его в метгемоглобин, вызывая метгемоглобинемию (см.). Общим следствием действия окислов азота является кислородная недостаточность.

В производственных условиях возможны случаи воздействия отдельных окислов азота (см. ниже).

Закись азота. Большие ее концентрации вызывают шум в ушах, асфиксию, потерю сознания. Смерть наступает от паралича дыхательного центра.

Окись азота действует на центральную нервную систему, воздействует на гемоглобин (переводит оксигемоглобин в метгемоглобин).

При легком отравлении окисью азота наблюдается общая слабость, сонливость, головокружение (симптомы обратимы).

При более тяжелом отравлении начальные симптомы усиливаются, к ним присоединяется тошнота, иногда рвота, наступает полуобморочное состояние. При отравлениях средней тяжести резкая слабость и головокружение продолжаются много часов, нередко наблюдается синюшность слизистых оболочек и кожи, учащение пульса. При тяжелых отравлениях начальные явления нередко стихают, но после 1-3-дневной ремиссии появляются слабость и головокружение, наблюдаются снижение кровяного давления, серо-синяя окраска слизистых оболочек и кожи, увеличение и болезненность печени; границы сердца расширены, тоны глухие, пульс замедлен. Возникают полиневриты, полиневралгии. Кровь шоколадно-бурого цвета, повышенной вязкости. Последствия тяжелого отравления могут длиться более года: нарушение ассоциативных способностей, ослабление памяти и мышечной силы, общая слабость, головная боль, головокружение, быстрая утомляемость.

Двуокись азота. Острое отравление начинается с легкого кашля, в более тяжелых случаях - с сильного кашля, чувства стеснения в груди, головной боли, иногда рвоты, саливации. Период относительно удовлетворительного состояния длится 2-18 час. Затем появляются признаки нарастающего отека легких: сильная слабость, увеличивающийся кашель, боли в груди, цианоз, в легких много влажных хрипов, учащенное сердцебиение, иногда озноб, повышение температуры. Нередки значительные расстройства со стороны желудочно-кишечного тракта: тошнота, рвота, понос, сильные боли в верхней части живота. Отек легких характеризуется тяжелым состоянием (резкий цианоз, сильная одышка, учащенный пульс, кашель с пенистой мокротой, иногда с кровью). Кровяное давление в норме, в крови - увеличение количества эритроцитов и гемоглобина, лейкоцитоз, замедленная РОЭ. Рентгенологически - пониженная прозрачность легочных полей, в обоих легких большое количество хлопьевидных затемнений различной величины. Токсический отек легких сопровождается «синим» типом гипоксемии, при осложнении коллапсом наблюдается «серый» тип (см. Гипоксия). Нередки осложнения пневмонией. Возможен смертельный исход. На секции - отек легких, кровоизлияния в них, темная жидкая кровь в сердце и сосудах. Состояние отравленных и прогноз ухудшается, если пострадавшие до отравления страдали заболеваниями сердца или легких.

При хронических отравлениях - хронические воспалительные заболевания верхних дыхательных путей, хронические бронхиты, эмфизема, понижение кровяного давления, зеленоватый налет на зубах, разрушение коронок резцов.

Ангидрид азотистой кислоты действует на организм аналогично окиси азота и другим низшим его окислам.

Первая помощь при отравлениях соединениями азота - перенести пострадавшего на свежий воздух; обеспечить полный покой, вдыхание кислорода. По показаниям - сердечные средства, при остановке дыхания - лобелин. Затем обязательная транспортировка пострадавшего в лежачем положении в стационар. При признаках начинающегося отека легких - внутривенно 10-20 мл 10% раствора хлорида кальция, 20 мл 40% раствора глюкозы с аскорбиновой к-той (500 мг), кислородная терапия.

Лечение развившегося отека легких зависит от типа гипоксемии. При «синем» типе - прерывистое введение кислорода (карбоген противопоказан), кровопускание (200-300 мл), при необходимости - повторение его через 6-8 час.; рекомендуются средства, понижающие кровяное давление, сердечные средства. При «сером» типе аноксемии - стимуляция дыхательного и вазомоторного центра путем прерывистого вдыхания карбогена, кофеин, эфедрин, внутривенно 50-100 мл 40% раствора глюкозы. Кровопускание противопоказано.

В целях профилактики и лечения пневмоний - раннее назначение сульфаниламидов и антибиотиков.

Профилактика: индивидуальная защита - фильтрующие противогазы марок В, М, KB, кислотозащитные перчатки и сапоги, герметичные очки, специальная одежда. Необходима полная герметизация производственного оборудования, где могут образоваться и выделяться нитрогазы, укрытие фиксированных источников выделения этих газов, местная вентиляционная система.

Предельно допустимая концентрация для окислов азота в воздухе рабочих помещений 5 мг/м 3 (в пересчете на NО 2), в атмосферном воздухе населенных пунктов 0,085 мг/м 3 или 0,4 мг/м 3 (для азотной кислоты).

Определение в воздухе окислов азота основано на поглощении двуокиси и четырехокиси азота раствором йодида калия и колориметрическом определении образовавшейся азотистой кислоты с реактивом Грисса-Илошваи.

Библиография: Некрасов Б. В. Основы общей химии, т. 1, с. 377, М., 1969; Реми Г. Курс неорганической химии, пер. с нем., т. 1, с. 560, М., 1972.

Круговорот А. - Виноградский С. Н. Микробиология почвы, М., 1952; Кретович В. Л. Обмен азота в растениях, М., 1972, библиогр.; Мишустин Е. Н. и Шильникова В. К. Биологическая фиксация атмосферного азота, М., 1968, библиогр.

Профессиональные вредности соединений А. - Вредные вещества в промышленности, под ред. Н. В. Лазарева, ч. 2, с. 136, Л., 1971; Гигиена труда в химической промышленности, под ред. З. А. Волковой и др., с. 373, М., 1967; Гуртовой Ю. А. Отравление парами азотной кислоты, Суд.-мед. экспертиза, т. 12, № 3, с. 45, 1969; Неймарк Е. З. и Зингер Ф. X. Профессиональные отравления рабочих угольных шахт, их лечение и профилактика, с. 34, М., 1961; Перегуд Е. А., Быховская М. С. и Гернет Е. В. Быстрые методы определения вредных веществ в воздухе, с. 67, М., 1970; Сафронов В. А. Особенности клинического течения отека легких при комбинированных поражениях азотной кислотой, Воен.-мед. журн., № 7, с. 32, 1966; Air quality criteria for nitrogen oxides, Washington, 1971, bibliogr.

В. П. Мишин; З. Г. Евстигнеева, В. Л. Кретович (круговорот А.); Е. Н. Марченко (проф.).

Азот экспериментальным путем был обнаружен шотландским химиком Д. Резерфордом в 1772 году. В природе азот находится в основном в свободном состоянии и является одной из главных составляющих воздуха. Каковы же физические и химические свойства азота?

Общая характеристика

Азот – химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14, формула азота – N 2 . Перевод названия элемента – «безжизненный» – может относится к азоту как к простому веществу. Однако азот в связанном состоянии является одним из главных элементов жизни, входит в состав белков, нуклеиновых кислот, витаминов и т.д.

Рис. 1. Электронная конфигурация азота.

Азот – элемент второго периода, не имеет возбужденных состояний, так как атом не имеет свободных орбиталей. Но этот химический элемент может проявлять в основном состоянии валентность не только III, но и IV за счет образования ковалентной связи по донорно-акцепторному механизму с участием неподеленной электронной пары азота. Степень окисления, которую может проявлять азот, изменяется в широких пределах от -3 до +5.

при изучении строения молекулы азота необходимо помнить, что химическая связь осуществляется за счет трех общих пар p-электронов, орбитали которых направлены по осям x, y, z.

Химические свойства азота

В природе азот встречается в виде простого вещества – газа N 2 (объемная доля в воздухе 78%) и в связанном состоянии. В молекуле азота атомы связаны прочной тройной связью. Энергия этой связи составляет 940 кДж/моль. При обычной температуре азот может взаимодействовать только с литием (Li 3 N). После предварительной активизации молекул путем нагревания, облучения или действием катализаторов азот вступает в реакции с металлами и неметаллами. Азот может вступать в реакции с магнием, кальцием или, например, алюминием:

3Mg+N 2 =Mg 3 N 2

3Ca+N 2 =Ca 3 N 2

Особенно важен синтез аммиака из простых веществ – азота и водорода в присутствии катализатора (губчатое железо):N 2 +3H 2 =2NH 3 +Q. Аммиак – бесцветный газ с резким запахом. Он хорошо растворим в воде, что в значительной степени обусловлено образованием водородных связей между молекулами аммиака и воды, а также реакцией присоединения к воде по донорно-акцепторному механизму. Слабощелочная реакция раствора обусловлена наличием в растворе ионов OH- (в небольшой концентрации, так как степень диссоциации гидроксида аммония очень мала – это слабое растворимое основание).

Рис. 2. Аммиак.

Из шести оксидов азота – N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 , где азот проявляет степень окисления от +1 до +5, два первых – N 2 O и NO – несолеобразующие, остальные вступают в реакцию с образованием солей.

Азотную кислоту, самое важное соединение азота, в промышленности получают из аммиака в 3 стадии :

  • окисление аммиака на платиновом катализаторе:

4NH 3 +5O 2 =4NO+6H 2 O

  • окисление NO до NO 2 кислородом воздуха:
  • поглощение NO 2 водой в избытке кислорода:

4NO 2 +2H 2 O+O 2 =4HNO 3

Азот также может реагировать при высоких температурах и давлении (в присутствии катализатора) с водородом:

N 2 +3H 2 =2NH 3

Рис. 3. Азотная кислота.

Применение азота

Основное применение азот находит в качестве исходного продукта для синтеза аммиака, а также для производства азотной кислоты, минеральных удобрений, красителей, взрывчатых веществ и других азотосодержащих соединений. Жидкий азот используют в охладительных системах. Для придания стали большей твердости, увеличения износостойкости, коррозионной стойкости и теплостойкости ее поверхность насыщают азотом при высоких температурах. Такая сталь выдерживает нагревание до 500 градусов без потери своей твердости.