Понятие об апоптозе. Апоптоз - запрограммированная гибель клетки. Апоптоз и старение




Апоптозом называется запрограммированная клеточная гибель. Этот процесс играет важную роль в росте и развитии организма, т. к. по мере созревания тканей некоторые клетки должны погибнуть, чтобы уступить место более дифференцированным и специализированным.

Если клетка не умирает и становится бессмертной, может развиться злокачественная опухоль . Впервые апоптоз был описан в 1970-е годы, но только в последнее время исследователи осознали его важную роль для развития организма, дифференцировки тканей и малигнизации.

Интерес к апоптозу возрос, когда выяснилось, что этот процесс находится под контролем генов, вовлеченных в злокачественную трансформацию, т. е. онкогенов, протоонкогенов и генов-супрессоров. Очевидно, что многие из этих генов активны во время развития организма.
Полагают, что изучение апоптоза и путей его регуляции позволит понять механизмы развития организма и старения. Утрата клеточного контроля над программированной клеточной гибелью ведет к развитию опухолей.

Апоптоз - особый вид клеточной гибели, ответственный за устранение клеток в нормальных тканях. Тем не менее этот процесс наблюдается и при патологических процессах. Гистологически проявляется уменьшением клетки, буллезным разрушением клеточной мембраны и конденсацией клеточного ядра.

В итоге образуются апоптотические тельца , содержащие неповрежденные органеллы; окружающие клетки фагоцитируют эти тельца. Апоптоз не сопровождается воспалением, что отличает его от некроза. Последний сопровождается набуханием клетки, разрушением всех ее структур и развитием воспалительного ответа.

На молекулярном уровне при апоптозе происходит саморазрушение генома на мельчайшие фрагменты, осуществляемое ферментами самой клетки; в итоге при электрофорезе образующихся клеточных компонентов в полиакриламидном геле выявляется характерная «лестница» из фрагментов ДНК.

Апоптоз играет важную роль в нормальном росте организма, а также в развитии и прогрессировании злокачественных опухолей. Спонтанный апоптоз встречается в злокачественных клетках и даже замедляет их рост.

Интенсивность этого процесса возрастает при облучении опухоли , проведении гормоно- и химиотерапии, при нагревании опухоли. В злокачественных опухолях апоптоз представляет механизм уничтожения клеток, в которых произошли канцерогенные изменения ДНК.

Однако если он заблокирован или подавлен мутациями контролирующих его генов, например BCL2 или ТР53, то эти клетки получают возможность свободно делиться и неограниченно накапливать мутации. Такая генетическая нестабильность - ранний этап развития злокачественных опухолей.

Многие из современных методов лечения, например лучевая и химиотерапия , направлены на уничтожение клеток за счет повреждения их ДНК. Мутации гена BCL2 или ТР53 ухудшают эффективность лечения, т. к. подавляют клеточную гибель.

Более глубокое понимание процессов запрограммированной клеточной гибели может привести к разработке новых, более эффективных методов лечения. Ингибиторы апоптоза (например, протоонкоген BCL2) могут быть ответственны за развитие резистентности к противоопухолевым препаратам, позволяя выживать клеткам с патологической ДНК.

Вероятно, в дальнейшем будут выявлены и другие механизмы подавления . Не следует думать, что этот процесс отражает нечто иллюзорное в биологической литературе, а термин принят только для описания отличной от некроза клеточной гибели. Апоптоз - фундаментальный процесс, контролируемый на молекулярном уровне, и можно надеяться, что его удастся расшифровать и использовать для медицинских нужд. Возможные механизмы апоптоза представлены на рисунке.


Возможные механизмы апоптоза и факторы, его контролирующие.
Внеклеточный сигнал запускает каскад событий, вовлекающий молекулы BCL2, BCL-xL и ВАХ.
Это ведет к наступлению программированной гибели клетки.
Этот механизм может быть заблокирован на любом из множества этапов, в результате чего клетка становится бессмертной.
ICE - интерлейкин-1b-превращающий фермент.

Существуют два хорошо охарактеризованных пути апоптоза: с участием рецепторов клеточной гибели (внешний путь) и с участием митохондрий (собственный путь)

Активация каспаз и апоптоз индуцируются связыванием специфических лигандов из группы TNF со своими рецепторами (рецепторы клеточной гибели)

У позвоночных активация каспаз происходит при различных путях . На рисунке ниже представлены два хорошо известных пути. Это путь с участием рецепторов клеточной гибели (который также называется внешний путь) и путь с участием митохондрий (собственный путь). Хотя между обоими путями имеется несколько существенных различий, они обладают чертой сходства, котороая заключается в том, что каждый включает этап активации инициирующей каспазы по механизму индуцированного сближения с последующей активацией эффекторных каспаз.

Вместе с тем, наблюдается некоторый перекрест между двумя механизмами , поскольку путь с участием рецепторов клеточной гибели может включать элементы митохондриального пути.

Представляют собой подгруппу относящихся к семейству рецепторов фактора некроза опухоли (TNFR) позвоночных. Они включают TNFR1, Fas (также называемый CD95 или АРО-1) и TRAIL (TRAIL-R1, -R2 у человека, также называемые DR4 и DR5). На рисунке ниже представлены различные типы рецепторов клеточной гибели.

Эти тримерные рецепторы связываются со специфическими лигандами (TNF, Fas-лигандом или TRAIL соответственно) и могут быстро запускать в клетках процесс апоптоза. Лиганды продуцируются различными клетками, включая клетки иммунной системы, часто в ответ на факторы, вызывающие воспаление.

Рецепторы гибели клеток содержат домен смерти, расположенный внутри клетки. Эти домены, как и домены CARD, DED и PYR, представляют собой еще один пример складок смерти, и они взаимодействуют с доменами смерти в адаптерных молекулах.

Находятся на поверхности клеток в виде тримеров, и, вероятно, соответствующие лиганды располагаются в виде кластеров, которые связаны с двумя и более этих тримеров. Такое расположение делает рецепторы доступными для взаимодействия с внутриклеточными белками. После связывания между собой доменов гибели Fas/CD95 и рецепторов TRAIL, они ассоциируют с адаптерным белком FADD (Fas-associated death domain). Эта ассоциация возникает при участии домена гибели FADD белка.

При этом в клетке молекулы FADD сближаются, и становится доступным другой регион белка, содержащий DED.

Домен DED белка FADD теперь связывается с DED-участками продомена мономера каспазы-8, что приводит к образованию димеров и активации инициаторной каспазы по механизму индуцированного сближения. После связывания рецептора гибели быстро образуется комплекс, содержащий FADD (за счет взаимодействия с доменом гибели). FADD связан с каспазой-8 (за счет взаимодействия с DED). Это сигнальный комплекс, индуцирующий клеточную гибель (англ, death-inducing signaling complex, DISC).

Активированная каспаза-8 начинает расщеплять в клетке субстраты, включая эффекторные каспазы-3 и -7, и происходит апоптоз. На рисунке ниже представлена последовательность событий при развитии апоптоза с участием рецепторов клеточной гибели.

Известно много примеров апоптоза , происходящего с участием рецепторов клеточной гибели. Этот путь особенно характерен для функционирования эффекторов иммунной системы и для регуляции иммунных процессов. Внешний путь апоптоза также реализуется в клетках другого происхождения, включая нейроны. В настоящее время в качестве возможного противоопухолевого средства исследуется TRAIL, который обладает способностью индуцировать апоптоз в клетках некоторых опухолей.

В соответствии с установленной ролью Fas в иммунной системе у людей, а также у мышей, несущих мутации, затрагивающие Fas или его лиганд, наблюдается заболевание, при котором происходит массивное разрастание лимфатических органов. Это разрастание обусловлено накоплением измененной популяции Т-клеток. У больных также отмечаются аномалии В-лимфоцитов, включающие продуцирование аутоиммунных антител и развитие В-клеточных лимфом.

Представлены два пути реализации апоптоза у позвоночных.
Путь через рецепторы клеточной гибели (также носящий название внешний путь) запускается, когда специфические лиганды гибели, относящиеся к семейству TNF, находят свои рецепторы.
Митохондриальный путь (также называемый внутренним, или собственным, путем)
реализуется при нарушении проницаемости наружной мембраны митохондрий в результате взаимодействий белков семейства Bcl-2 и высвобождения межмембранных белков.
К числу последних относится цитохром С, который при взаимодействии с белками цитозоля запускает активацию каспаз.
Эти процессы подробно рассмотрены в последующих статьях на сайте.

Рецепторы клеточной гибели относятся к семейству TNF-рецепторов,
у которых со стороны клетки расположены домены клеточной гибели.
На поверхности многих типов клеток позвоночных эти рецепторы существуют в виде тримеров.
При связывании лиганда с рецептором клеточной гибели на поверхности клетки, адаптерный белок FADD присоединяется к нему с клеточной стороны.
Это происходит при взаимодействии доменов клеточной гибели (DD)-(DD).
Затем при участии эффекторных доменов клеточной гибели (DED)-(DED) к белку FADD присоединяется каспаза-8.
При димеризации каспазы-8 фермент активируется по механизму индуцированной близости.
Активная каспаза расщепляет и активирует эффекторные каспазы, которые вызывают апоптоз.
Комплекс, содержащий рецептор клеточной гибели, FADD и каспазу-8, называется сигнальным комплексом индукции клеточной гибели (DISC).

Апоптоз - явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов.

Апоптоз - форма гибели клетки, проявляющаяся в уменьшении её размера, конденсации и фрагментации хроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду.

Регуляция апоптоза

Апоптоз это генетически контролируемая смерть клетки.

Апоптоз может регулироваться:

внешними факторами;

автономными механизмами.

Воздействие внешних факторов . Апоптоз может регулироваться действием многих внешних факторов, которые ведут к повреждению ДНК. При невосстановимом повреждении ДНК путем апоптоза происходит элиминация потенциально опасных для организма клеток. В данном процессе большую роль играет ген супрессии опухолей р53. К активации апоптоза также приводят вирусные инфекции, нарушение регуляции клеточного роста, повреждение клетки и потеря контакта с окружающими или основным веществом ткани. Апоптоз – это защита организма от персистенции поврежденных клеток, которые могут оказаться потенциально опасными для многоклеточного организма.

Автономный механизм апоптоза . При развитии эмбриона различают три категории автономного апоптоза: морфогенетический, гистогенетический и филогенетический.

Морфогенетический апоптоз участвует в разрушении различных тканевых зачатков. Примерами являются: азрушение клеток в межпальцевых промежутках;

гибель клеток приводит к разрушению избыточного эпителия при слиянии небных отростков, когда формируется твердое небо.

гибель клеток в дорсальной части нервной трубки во время смыкания, что необходимо для достижения единства эпителия двух сторон нервной трубки и связанной с ними мезодермы. Нарушение морфогенетического апоптоза в этих трех локализациях приводят к развитию синдактилии, расщеплению твердого неба и spina bifida соответственно.

Гистогенетический апоптоз наблюдается при дифференцировке тканей и органов, что наблюдается, например, при гормональнозависимой дифференцировке половых органов из тканевых зачатков. Так, у мужчин клетками Сертоли в яичках плода синтезируется гормон, который вызывает регрессию протоков Мюллера (из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища) путем апоптоза.

Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например, пронефроса.

49.Понятие о канцерогенезе. Современные представления об онкогенах и их роли в опухлевом процессе.

Канцерогенез - сложный патофизиологический процесс зарождения и развития опухоли.

Онкоген - это ген, кодирующий белок, который, в случае нарушения регуляции, может вызвать образование злокачественной опухоли. Мутации, вызывающие активацию онкогенов, повышают шанс того, что клетка превратится в раковую клетку. Считается, что гены-супрессоры опухолей (ГСО) предохраняют клетки от ракового перерождения, и, таким образом, рак возникает либо в случае нарушения работы генов-супрессоров опухолей, либо при появлении онкогенов (в результате мутации или повышения активности протоонкогенов, см.ниже).

Многие клетки при появлении в них мутаций вступают в апоптоз, но в присутствии активного онкогена могут ошибочно выживать и пролиферировать. Для злокачественного перерождения клетки под действием многих онкогенов требуется дополнительная стадия, например, мутация в другом гене, факторы внешней среды (например, вирусные инфекции).

Все гены которые могут отвечать за онкогенез делят: мутаторные гены, вирусные онкогены, Протоонкогены - это обычный ген, который может стать онкогеном из-за мутаций или повышения экспрессии. Опухлевые супрессоры.

Точечные мутации, амплификация – умножение числа копий.

Папова вирусы (кольцевая ДНК) не внедряются. Ретровирусы (цепь РНК).

Определение апоптоза. Апоптоз – феномен наследственно запрограммированной смерти клеток. Каждая клетка при своем рождении как бы запрограммирована на самоуничтожение. Условие ее жизни – блокирование этой суицидальной программы.

Апоптоз реализуется для клеток:

Старых, отживших свой срок;

Клеток с нарушениями дифференцировки;

Клеток с нарушениями генетического аппарата;

Клеток, пораженных вирусами.

Морфологические признаки апоптоза.

Сморщивание клетки;

Конденсация и фрагментация ядра;

Разрушение цитоскелета;

Буллезное выпячивание клеточной мембраны.

Особенность апоптоза – апоптоз не вызывает воспаления в окружающих тканях.Причина - сохранность мембраны и → изоляция повреждающих факторов цитоплазмы до полного завершения процесса (О 2 - , Н 2 О 2 , лизосомальные ферменты). Эта особенность – важная позитивная черта апоптоза, в отличие от некроза. При некрозе мембрана повреждается (или разрывается) сразу же. Поэтому при некрозе содержимое цитоплазмы высвобождается (О 2 - , Н 2 О 2 , лизосомальные ферменты). Возникает повреждение соседних клеток и воспалительный процесс. Важная черта апоптоза - удаление умирающих клеток происходит без развития воспаления.

Процесс апоптоза - может быть разделен на 2 (две) фазы:

1. Формирование и проведение апоптических сигналов – фаза принятия решения.

2. Демонтаж клеточных структур – эффекторная фаза.

1-я фаза – принятия решения (=формирование и принятие апоптических сигналов). Это фаза принятия стимулов для апоптоза. В зависимости от характера стимулов, может быть 2 (два) типа сигнальных путей:

1) повреждение ДНК в результате радиации, действия токсических агентов, глюкокортикоидов и т.д.

2) активация рецепторов «региона клеточной смерти» . Рецепторы «региона клеточной смерти» - это группа рецепторов на мембранах любых клеток, которые воспринимают проапоптические стимулы. Если количество и активность таких рецепторов увеличивается, то увеличивается количество апоптически гибнущих клеток. К рецепторам «региона клеточной смерти» относятся: а) TNF-R (связывается с фактором некроза опухолей и активирует апоптоз); б) Fas-R (к); в) CD45-R (связывается с антителами и активирует апоптоз).

В зависимости от типа сигнала, существует 2 (два) основных способа апоптоза: а) в результате повреждения ДНК;

б) в результате самостоятельной активации рецепторов «региона клеточной смерти» без повреждения ДНК.

2-я фаза – эффекторная (=демонтаж клеточных структур. Основные фигуранты эффекторной фазы:

Цистеиновые протеазы (каспазы);

Эндонуклеазы;

Сериновые и лизосомальные протеазы;

Протеазы, активированные Ca ++ (кальпейн)

Но! Среди них основные эффекторы демонтажа клеточных структур – каспазы.

Классификация каспаз - 3 (три) группы:

Эффекторные каспазы - каспазы 3, 6, 7.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. = активаторы цитокинов – каспазы 1, 4, 5, 13.

Эффекторные каспазы – каспазы 3, 6, 7. Это непосредственные исполнители апоптоза. Эти каспазы находятся в клетке в неактивном состоянии. Активированные эффекторные каспазы начинают цепь протеолитических событий, целью которых является «демонтаж» клетки. Их активируют индукторы активации эффекторных каспаз.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. Основные индукторы – каспазы 8 и 9 . Они активируют эффекторные каспазы. Механизм – расщепление аспарагиновых оснований с последующей димеризацией активных субъединиц. Эти каспазы при обычном состоянии в клетках неактивны, существуют в форме прокаспаз.

Активация тех или иных индукторов зависит от типа сигнального пути:

1. При повреждении ДНК задействован сигнальный путь № 1, активируется каспаза № 9.

2. При активации рецепторов клеточной смерти задействован сигнальный путь № 2, активируется каспаза № 8.

Сигнальный путь № 1 (связан с повреждением ДНК)

Повреждение ДНК

Активация гена р53 и продукция соответствующего белка

Активация проапоптических генов семейства BCL-2 (BAX и BID)

Образование белков этих генов

Активация каспазы 9

Активация каспазы 3

Сигнальный путь № 2

(связан с активацией «региона клеточной смерти»)

Лиганд + рецепторы «региона клеточной смерти»

Активация каспазы № 8

Независимая активация каспазы № 3

Активация других каспаз и протеаз

Регуляция апоптоза. Исследования последних лет привели к созданию модели апоптоза. По этой модели каждая клетка при своем рождении запрограммирована на самоуничтожение. Следовательно, условием ее жизни является блокирование этой суицидальной программы. Основная задача регуляции апоптоза – держать эффекторные каспазы в неактивном состоянии, но быстро переводить их в активную форму в ответ на минимальное действие соответствующих индукторов.

Отсюда, понятие ингибиторов и активаторов апоптоза.

Ингибиторы апоптоза (=антиапоптические факторы). К наиболее серьезным ингибиторам апоптоза относятся ростовые факторы. Другие: нейтральные аминокислоты, цинк, эстрогены, андрогены, некоторые белки.

Пример: Белки семейства IAP – подавляют активность каспаз 3 и 9. Запомнить: один из этих белков (Survin) обнаружен в опухолевых клетках. С ним связывают резистентность опухолевых клеток к химиотерапии

Активаторы апоптоза (=проапоптические факторы). Это проапоптические гены и их продукция: а) гены семейства BCL-2 (BAX и BID); б) гены Rb и P53 (запускают апоптоз, если клетка задержана механизмом checkpoint.

Резюме. Патогенез многих заболеваний, в том числе и опухолевых, связан со снижением способности клеток подвергаться апоптозу. Отсюда накопление поврежденных клеток и формирование опухоли.

ПАТОФИЗИОЛОГИЯ КЛЕТОЧНОГО ДЕЛЕНИЯ

Основное отличие деления здоровой и опухолевой клетки:

Деление здоровой клетки регулируется паракринным и эндокринным способом. Клетка подчиняется этим сигналам и делится только в том случае, если организм нуждается в образовании новых клеток данного вида.

Деление опухолевой клетки регулируется аутокринным способом. Опухолевая клетка сама образует митогенные стимуляторы и сама же делится под их влиянием. Она не отвечает на паракринные и эндокринные стимулы.

Существует 2(два) механизма опухолевой трансформации клеток:

1. Активация онкогенов.

2. Инактивация генов-супрессоров.

АКТИВАЦИЯ ОНКОГЕНОВ

Прежде всего 2 (два) главных понятия: = протоонкогены;

Онкогены.

Протоонкогены – это нормальные, неповрежденные гены, которые контролируют деление здоровой клетки.

К протоонкогенам относятся гены, контролирующие образование и работу:

1. Ростовых факторов.

2. Мембранных рецепторов к ростовым факторам, например тирозинкиназных рецепторов.

3. Ras-белков.

4. MAP-киназ, участниц МАР-киназного каскада.

5. Транскрипционных факторов AP-1.

Онкогены – поврежденные протоонкогены. Процесс повреждения протоонкогена и трансформация его в онкоген называется активация онкогена.

Механизмы активации онкогена.

1. Включение (вставка) промотора. Промотор – это участок ДНК, с которым связывается РНК-полимераза протоонкогена. Необходимое условие – промотор должен находится в непосредственной близости с протоонкогеном. Отсюда варианты: а) промотор - ДНК-копия онкорнавирусов; б) «прыгающие гены» - участки ДНК, способные перемещаться и встраиваться в разные участки генома клетки.

2. Амплификация – увеличение числа протоонкогенов или появление копий протоонкогенов. Протоонкогены в норме обладают небольшой активностью. При увеличении числа или появлении копий их общая активность значительно возрастает и это может привести к опухолевой трансформации клетки.

3. Транслокация протоонкогенов. Это перемещение протоонкогена в локус с функционирующим промотором.

4. Мутации протоонкогенов.

Продукция онкогенов. Онкогены образуют свои белки. Эти белки называются «онкобелки».

Синтез онкобелков называется «экспрессия активных клеточных онкогенов».

Онкобелки – в основе своей есть аналоги белков протоонкогенов: ростовых факторов, Ras-белков, МАР-киназ, транскрипционных факторов. Но есть количественные и качественные отличия онкогенов от белков протоонкогенов.

Отличия онкобелков от нормальной продукции протоонкогенов:

1. Увеличение синтеза онкобелков по сравнению с синтезом белков протоонкогенов.

2. Онкобелки имеют структурные отличия от белков протоонкогенов.

Механизм действия онкобелков.

1. Онкобелки соединяются с рецепторами для факторов роста и образуют комплексы, постоянно генерирующие сигналы к делению клетки.

2. Онкобелки повышают чувствительность рецепторов к факторам роста или понижают чувствительность к ингибиторам роста.

3. Онкобелки могут сами действовать как факторы роста.

ИНАКТИВАЦИЯ ГЕНОВ-СУПРЕССОРОВ

Гены-супрессоры: Rb и р53.

Их продукция – соответствующие белки.

Инактивация генов-супрессоров (наследственное или приобретенное) ведет к пропуску в митоз клеток с поврежденной ДНК, размножению и накоплению этих клеток. Это – возможная причина формирования опухоли.

ОПУХОЛЕВЫЙ РОСТ: ОПРЕДЕЛЕНИЕ, ПРИЧИНЫ УВЕЛИЧЕНИЯ КОЛИЧЕСТВА ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Опухоль – патологическое разрастание, отличающееся от других патологических разрастаний наследственно закрепленной способностью к неограниченному неконтролируемому росту.

Другие патологические разрастания – гиперплазия, гипертрофия, регенерация после повреждения.

Причины увеличения количества злокачественных заболеваний среди населения:

1. Увеличение продолжительности жизни.

2. Улучшение качества диагностики → увеличение выявляемости онкологических заболеваний.

3. Ухудшение экологической обстановки, увеличение содержания канцерогенных факторов в окружающей среде.

ДОБРОКАЧЕСТВЕННЫЕ И ЗЛОКАЧЕСТВЕННЫЕ ОПУХОЛИ

Единой классификации опухолей до сих пор не создано. Причина:

1. Большое разнообразие признаков, характерных для различных опухолей.

2. Недостаточность знания их этиологии и патогенеза.

В основе современных классификаций - главные морфологические и клинические признаки опухолей.

На основе клинической характеристики все опухоли делят на доброкачественные и злокачественные.

Доброкачественные опухоли:

1. Клетки опухоли морфологически идентичны или похожи на нормальные клетки-предшественники.

2. Степень дифференцировки опухолевых клеток – достаточно высокая.

3. Скорость роста – медленная, в течение многих лет.

4. Характер роста – экспансивный, т.е. во время роста опухоли соседние ткани раздвигаются, иногда сдавливаются, но обычно не повреждаются.

5. Отграниченность от окружающих тканей – четкая.

6. Способность к метастазированию – отсутствует.

7. Отсутствие выраженного неблагоприятного воздействия на организм. Исключение: опухоли, расположенные вблизи жизненно важных центров. Пример: опухоль головного мозга, сдавливающая нервные центры.

Злокачественные опухоли.

1. Клетки опухоли морфологически отличаются от нормальной клетки-предшественницы (часто до неузнаваемости).

2. Степень дифференцировки опухолевых клеток – низкая.

3. Скорость роста – быстрая.

4. Характер роста – инвазивный, т.е. опухоль прорастает в соседние структуры. Способствующие факторы:

Приобретение опухолевыми клетками способности отшнуровываться от опухолевого узла и активно перемещаться;

Способность опухолевых клеток продуцировать «канцероагрессины». Это белки, которые проникают в окружающие нормальные ткани и стимулируют хемотаксис для опухолевых клеток.

Уменьшение сил клеточной адгезии. Это облегчает отшнуровку опухолевых клеток от первичного узла и их последующее движение.

Уменьшение контактного торможения.

5. Отграниченность от окружающих тканей – нет.

6. Способность к метастазированию – выражена.

7. Воздействие на организм – неблагоприятное, генерализованное.