Аффинитет и внутренняя активность. Роль внутриклеточных посредников цамф. Механизм действия вяжущих средств обусловлен




Фармакодинамика включает понятия о фармакологических эффектах, локализации действия и механизмах действия ЛВ (т.е. представления о том, как, где и каким образом ЛВ действуют в организме). К фармакодинамике относится также понятие о видах действия ЛВ.

2.1. ФАРМАКОЛОГИЧЕСКИЕ ЭФФЕКТЫ, ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Фармакологические эффекты - изменения функ- ции органов и систем организма, вызываемые ЛВ. К фармакологическим эффектам ЛВ относятся, например, повышение частоты сердечных сокращений, снижение артериального давления, повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжительности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определенных, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты ЛВ являются полезными - благодаря им ЛВ применяют в медицинской практике (основные эффекты),

а другие не используются и, более того, являются нежелательными (побочные эффекты).

Для многих веществ известны места их преимущественного действия в организме - т.е. локализация действия. Одни вещества преимущественно действуют на определенные структуры головного мозга (противопаркинсонические, антипсихотические средства), другие в основном действуют на сердце (сердечные гликозиды).

Благодаря современным методическим приемам, можно определить локализацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гли- козиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на Na + -, К + -АТФазу мембран кардиомиоцитов (молекулярный уровень).

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают сни- жение артериального давления, уменьшая синтез ангиотензина II (ингибиторы АПФ), или блокируя поступление Са 2+ в гладкомышечные клетки (блокаторы потенциалзависимых кальциевых каналов) или уменьшая выделение норадреналина из окончаний симпатических нервов (симпатолитики). Способы, с помощью которых ЛВ вызывают фармакологические эффекты, определяются как м е х а н и з - мы действия.

Фармакологические эффекты большинства ЛВ вызываются их действием на определенные молекулярные субстраты, так называемые «мишени».

К основным молекулярным «мишеням» для ЛВ относятся рецепторы, ионные каналы, ферменты, транспортные системы.

Рецепторы

А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами

Рецепторы представляют собой функционально активные макромолекулы или их фрагменты (в основном это белковые молекулы - липопротеины, гликопротеины, нуклеопротеины и др.). При взаимодействии веществ (лигандов) с рецепторами возникает цепь биохимических реакций, приводящая к развитию определенных

фармакологических эффектов. Рецепторы служат мишенями для эндогенных лигандов (нейромедиаторов, гормонов, других эндоген- ных биологически активных веществ), но могут взаимодействовать и с экзогенными биологически активными веществами, в том числе с ЛВ. Рецепторы взаимодействуют только с определенными веществами (имеющими определенную химическую структуру и пространственную ориентацию), т.е. обладают избирательностью, поэтому их называют специфическими рецепторами.

Рецепторы не являются стабильными, постоянно существующими структурами клеток. Количество их может увеличиваться вследствие преобладания синтеза рецепторных белков или уменьшаться вследствие превалирования процесса их деградации. Кроме того, рецепторы могут терять свою функциональную активность (десенситизация), вследствие чего при взаимодействии рецептора с лигандом не возникают биохимические реакции, приводящие к фармакологическому эффекту. Все эти процессы регулируются концентрацией лиганда и длительностью его воздействия на рецепторы. При длительном воздействии лиганда развивается десенситизация рецепторов и/или снижение их количества (down-регуляция), и, наоборот, отсутствие лиганда (или снижение его концентрации) приводит к увеличению количества рецепторов (up-регуляция).

Рецепторы могут находиться в мембране клеток (мембранные рецепторы) или внутри клеток - в цитоплазме или ядре (внутрикле- точные рецепторы) (рис. 2-1).

Мембранные рецепторы. В мембранных рецепторах выделяют внеклеточный и внутриклеточный домены. На внеклеточном домене имеются места связывания для лигандов (веществ, взаимодействующих с рецепторами). Внутриклеточные домены взаимодействуют с эффекторными белками (ферментами или ионными каналами) или сами обладают ферментативной активностью.

Известны три вида мембранных рецепторов.

1. Рецепторы, непосредственно сопряженные с ферментами. Поскольку внутриклеточный домен этих рецепторов проявляет ферментативную активность, их называют также рецепторами-ферментами, или каталитическими рецепторами. Большинство рецепторов этой группы обладает тирозинкиназной активностью. При связывании рецептора с веществом происходит активация тирозинкиназы, которая фосфорилирует внутриклеточные белки и таким образом изменяет их активность. К этим рецепторам относят рецепторы для инсулина, некоторых факторов роста и цитокинов. Известны рецепторы, непосредственно связанные с гуанилатциклазой (при воздействии на них предсердного натрийуретического фактора, происходит активация гуанилатциклазы, и в клетках увеличивается содержание циклического гуанозинмонофосфата).

2. Рецепторы, непосредственно сопряженные с ионными каналами, состоят из нескольких субъединиц, которые пронизывают клеточную мембрану и формируют ионный канал. При связывании вещества с внеклеточным доменом рецептора ионные каналы открываются, в результате изменяется проницаемость клеточных мембран для различных ионов. К таким рецепторам относятся Н-холинорецепторы, рецепторы к гамма-аминомасляной кислоте (ГАМК), относящиеся к подтипу А, глициновые рецепторы, глутаматные рецепторы.

Н-холинорецептор состоит из пяти субъединиц, пронизывающих клеточную мембрану. При связывании двух молекул ацетилхолина с двумя α-субъединицами рецептора открывается натриевый канал и ионы натрия поступают в клетку, вызывая деполяризацию клеточной мембраны (в скелетных мышцах это приводит к мышечному сокращению).

ГАМК А -рецепторы непосредственно сопряжены с хлорными каналами. При взаимодействии рецепторов с ГАМК хлорные каналы открываются и ионы хлора поступают в клетку, вызывая

гиперполяризацию клеточной мембраны (это приводит к усилению тормозных процессов в ЦНС). Таким же образом функцио- нируют глициновые рецепторы. 3. Рецепторы, взаимодействующие с G-белками. Эти рецепторы взаимодействуют с ферментами и ионными каналами клеток через белки-посредники (G-белки - гуанозинтрифосфат (GTP)-связывающие белки). При действии вещества на рецептор α-субъединица G-белка связывается с гуанозинтрифосфатом. При этом комплекс G-белок-гуанозинтрифосфат вступает во взаимодействие с ферментами или ионными каналами. Как правило, один рецептор сопряжен с несколькими G-белками, а каждый G-белок может одновременно взаимодействовать с несколькими молекулами ферментов или несколькими ионными каналами. В результате такого взаимодействия происходит усиление (амплификация) эффекта.

Хорошо изучено взаимодействие G-белков с аденилатциклазой и фосфолипазой С.

Аденилатциклаза - мембраносвязанный фермент, гидролизующий АТФ. В результате гидролиза АТФ образуется циклический аденозинмонофосфат (цАМФ), который активирует цАМФ-зависимые протеинкиназы, фосфорилирующие клеточные белки. При этом изменяется активность белков и регулируемых ими процессов. По влиянию на активность аденилатциклазы G-белки подразделяются на G s -белки, стимулирующие аденилатциклазу, и G i -белки, ингибирующие этот фермент. Примером рецепторов, взаимодействующих с G s -белками, являются β 1 -адренорецепторы (опосредуют стимулирующее влияние на сердце симпатической иннервации), а рецепторов, взаимодействующих с G i -белками - М 2 -холинорецепторы (опосредуют тормозное влияние на сердце парасимпатической иннервации). Эти рецепторы локализованы в мембране кардиомиоцитов.

При стимуляции β 1 -адренорецепторов повышается активность аденилатциклазы и увеличивается содержание цАМФ в кардиомиоцитах. В результате активируется протеинкиназа, которая фосфорилирует кальциевые каналы мембран кардиомиоцитов. Через эти каналы ионы кальция поступают в клетку. Вход Са 2+ в клетку увеличивается, что приводит к повышению автоматизма синусного узла и увеличению частоты сердечных сокращений. Внутриклеточные эффекты противоположной направленности развиваются при стимуляции М 2 -холинорецепторов кардиомиоцитов, в результате происходит снижение автоматизма синусного узла и частоты сердечных сокращений.

С фосфолипазой С взаимодействуют G q -белки, вызывая ее активацию. Примером рецепторов, сопряженных с G q -белками, являются а г адренорецепторы гладкомышечных клеток сосудов (опосредующие влияние на сосуды симпатической иннервации). При стимуляции этих рецепторов повышается активность фосфолипазы С. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-дифосфат клеточных мембран с образованием гидрофильного вещества инозитол-1,4,5-трифосфа- та, который взаимодействует с кальциевыми каналами саркоплазматического ретикулума клетки и вызывает высвобождение Са 2+ в цитоплазму. При повышении концентрации Са 2+ в цитоплазме гладкомышечных клеток увеличивается скорость образования комплекса Са 2+ -кальмодулин, который активирует киназу легких цепей миозина. Этот фермент фосфорилирует легкие цепи миозина, в результате чего облегчается взаимодействие актина с миозином, и происходит сокращение гладких мышц сосудов.

К рецепторам, взаимодействующим с G-белками, относятся также дофаминовые рецепторы, некоторые подтипы серотониновых (5-НТ) рецепторов, опиоидные рецепторы, гистаминовые рецепторы, рецепторы для большинства пептидных гормонов и др.

Внутриклеточные рецепторы представляют собой растворимые цитозольные или ядерные белки, которые опосредуют регулирующее действие веществ на транскрипцию ДНК. Лигандами внутриклеточных рецепторов являются липофильные вещества (стероидные и тиреоидные гормоны, витамины А, Д).

Взаимодействие лиганда (например, глюкокортикоидов) с цитозольными рецепторами вызывает их конформационное изменение, в результате комплекс вещество-рецептор перемещается в ядро клетки, где связывается с определенными участками молекулы ДНК. Происходит изменение (активация или репрессия) транскрипции генов, кодирующих синтез различных функционально активных белков (ферментов, цитокинов и т.д.). Увеличение (или уменьшение) синтеза ферментов и других белков приводит к изменению биохи- мических процессов в клетке и возникновению фармакологических эффектов. Так, глюкокортикоиды, активируя гены, ответственные за синтез ферментов глюконеогенеза, стимулируют синтез глюкозы, что способствует развитию гипергликемии. В результате репрессии генов, кодирующих синтез цитокинов, молекул межклеточной адгезии, циклооксигеназы, глюкокортикоиды оказывают иммунодепрессивное и противовоспалительное действие. Фармакологические

эффекты веществ при их взаимодействии с внутриклеточными рецепторами развиваются медленно (в течение нескольких часов и даже суток).

Взаимодействие с ядерными рецепторами характерно для тиреоидных гормонов, витаминов А (ретиноидов) и Д. Обнаружен новый подтип ядерных рецепторов - рецепторы, активируемые пролифераторами пероксисом. Эти рецепторы участвуют в регуляции липидного обмена и других метаболических процессов и являются мишенями для клофибрата (гиполипидемического препарата).

Б. Связывание вещества с рецептором. Понятие об аффинитете

Для того чтобы ЛВ подействовало на рецептор, оно должно с ним связаться. В результате образуется комплекс «вещество-рецептор». Образование подобного комплекса осуществляется с помощью межмолекулярных связей. Существует несколько видов таких связей.

Ковалентные связи - самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи наиболее часто обеспечивают необратимое связывание веществ, однако они не характерны для взаимодействия ЛВ с рецепторами.

Ионные связи менее прочные, возникают между группировками, несущими разноименные заряды (электростатическое взаимо- действие).

Ион-дипольные и диполь-дипольные связи близки по характеру к ионным связям. В электронейтральных молекулах ЛВ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированных диполей. Ионные и дипольные связи характерны для взаимодействия ЛВ с рецепторами.

Водородные связи играют весьма существенную роль во взаимодействии ЛВ с рецепторами. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Водородные связи - слабые, для их образования необходимо, чтобы молекулы находились друг от друга на расстоянии не более 0,3 нм.

Ван-дер-ваальсовы связи - наиболее слабые связи, образуются между двумя любыми атомами, если они находятся на расстоянии не более 0,2 нм. При увеличении расстояния эти связи ослабевают.

Гидрофобные связи образуются при взаимодействии неполярных молекул в водной среде.

Для характеристики связывания вещества с рецептором используют термин aффинитет.

Аффинитет (от лат. affinis - родственный) - способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор». Кроме того, термин «аффинитет» используют для характеристики прочности связывания вещества с рецептором (т.е. продолжительности существования комплекса «вещество-рецептор»). Количественной мерой аффинитета как прочности связывания вещества с рецептором является константа диссоциации (К d).

Константа диссоциации равна концентрации вещества, при которой половина рецепторов в данной системе связана с веществом. Выражается этот показатель в молях/л (М). Между аффинитетом и константой диссоциации существует обратно пропорциональное соотношение: чем меньше К d , тем выше аффинитет. Например, если К d вещества А равна 10 -3 М, а К d вещества В равна 10 -10 М, аффинитет вещества В выше, чем аффинитет вещества А.

В. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов

Вещества, которые обладают аффинитетом, могут иметь внутреннюю активность.

Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности ЛВ подразделяют на aгонисты и aнтагонисты рецепторов.

Агонисты (от греч. agonistes - соперник, agon - борьба) или миметики - вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецеп- торов, в результате чего возникает цепь биохимических реакций и развиваются определенные фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторам вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).

Антагонисты (от греч. antagonisma - соперничество, anti - против, agon - борьба) - вещества, обладающие аффинитетом, но лишенные внутренней активности. Связываясь с рецепторами, они препятствуют действию на эти рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому антагонисты также называют б л о к а т о р а м и рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или ослаблением действия эндогенных агонистов данных рецепторов. При этом возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист М-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, повышает частоту сердечных сокра- щений.

Если антагонисты занимают те же места связывания, что и агонисты, они могут вытеснять друг друга из связи с рецепторами. Подобный вид антагонизма обозначают как конкурентный антагонизм, а антагонисты называют конкурентными антагониста- м и. Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ к данному рецептору и их концентрации. В достаточно высоких концентрациях даже вещество с низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Поэтому при конкурентном антагонизме эффект агониста может быть полностью восстановлен при увеличении его концентрации в среде. Конкурентный антагонизм часто используют для устранения токсических эффектов ЛВ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частичные агонисты уменьшают их эффекты и поэтому в клинической практике могут быть использованы вместо антагонистов. Например, частичные агонисты β-адренорецепторов (пиндолол) так же, как антагонисты этих рецепторов (пропранолол, атенолол) применяют при лечении гипертонической болезни.

Неконкурентный антагонизм развивается, когда антагонист занимает так называемые аллостерические места связывания на рецепторах (участки макромолекулы, не являющиеся местами связывания агониста, но регулирующие активность рецепторов). Неконкурентные антагонисты изменяют конформацию рецепторов

таким образом, что они теряют способность взаимодействовать с агонистами. При этом увеличение концентрации агониста не может привести к полному восстановлению его эффекта. Неконкурентный анта- гонизм также имеет место при необратимом (ковалентном) связывании вещества с рецептором.

Некоторые ЛВ сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как агонистыантагонисты (например, буторфанол - антагонист μ и агонист κ опиоидных рецепторов).

Другие «мишени» для лекарственных веществ

К другим «мишеням» относят ионные каналы, ферменты, транспортные белки.

Ионные каналы. Одной из основных «мишеней» для ЛВ являются потенциалзависимые ионные каналы, избирательно проводящие Na + , Са 2+ , К + и другие ионы через клеточную мембрану. В отличие от рецептор-управляемых ионных каналов, открываемых при взаимодействии вещества с рецептором, эти каналы регулируются потенциалом действия (открываются при деполяризации клеточной мембраны). ЛВ могут или блокировать потенциалзависимые ионные каналы и таким образом нарушать поступление через них ионов, или активи- ровать, т.е. способствовать прохождению ионных токов. Большинство ЛВ блокируют ионные каналы.

Местные анестетики блокируют потенциалзависимые Nа + -каналы. К числу блокаторов Na + -каналов относятся и многие противоаритмические средства (хинидин, лидокаин, прокаинамид). Некоторые противоэпилептические средства (фенитоин, карбамазепин) также блокируют потенциалзависимые Nа + -каналы, и с этим связана их противосудорожная активность. Блокаторы натриевых каналов нарушают вхождение в клетку Na + и таким образом препятствуют деполяризации клеточной мембраны.

Весьма эффективными при лечении многих сердечно-сосудистых заболеваний (гипертонической болезни, сердечных аритмий, стенокардии) оказались блокаторы Са 2+ -каналов (нифедипин, верапамил и др.). Ионы кальция принимают участие во многих физиологических процессах: в сокращении гладких мышц, генерации импульсов в синусно-пред- сердном узле и проведении возбуждения по предсердно-желудочковому узлу, агрегации тромбоцитов и др. Блокаторы медленных кальциевых

каналов препятствуют вхождению ионов кальция внутрь клетки через потенциалзависимые каналы и вызывают расслабление гладких мышц сосудов, уменьшение частоты сокращений сердца и АВ-проводимости, нарушают агрегацию тромбоцитов. Некоторые блокаторы кальциевых каналов (нимодипин, циннаризин) преимущественно расширяют сосуды мозга и оказывают нейропротекторное действие (препятствуют поступлению избыточного количества Са 2+ внутрь нейронов).

В качестве лекарственных средств используются как активаторы, так и блокаторы калиевых каналов. Активаторы калиевых каналов (миноксидил) нашли применение в качестве антигипертензивных средств. Они способствуют выходу ионов калия из клетки, что приводит к гиперполяризации клеточной мембраны и уменьшению тонуса гладких мышц сосудов. В результате происходит снижение артериального давления. ЛВ, блокирующие потенциалзависимые калиевые каналы (амиодарон, соталол), нашли прменение при лечении аритмий сердца. Они препятствуют выходу К + из кардиомиоцитов, вследствие чего увеличивают продолжительность потенциала действия и удлиняют эффективный рефрактерный период (ЭРП). Блокада АТФ-зависимых калиевых каналов в β-клетках поджелудочной железы приводит к повышению секреции инсулина; блокаторы этих каналов (производные сульфонилмочевины) применяют как противодиабетические средства.

Ферменты. Многие ЛВ являются ингибиторами ферментов. Ингибиторы МАО нарушают метаболизм (окислительное дезаминирование) катехоламинов (норадреналина, дофамина, серотонина) и повышают их содержание в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (например, ниаламида). Механизм действия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез простагландинов Е 2 и I 2 и развивается прововоспалитель- ное действие. Ингибиторы ацетилхолинэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхолина и повышают его содержание в синаптической щели. Препараты этой группы применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

Транспортные системы. ЛВ могут действовать на транспортные системы (транспортные белки), переносящие молекулы некоторых веществ или ионы через мембраны клеток. Например, трициклические антидепрессанты блокируют транспортные белки, которые переносят норадреналин и серотонин через пресинаптическую мемб-

рану нервного окончания (блокируют обратный нейрональный захват норадреналина и серотонина). Сердечные гликозиды блокируют К + -АТФазу мембран кардиомиоцитов, осуществляющую транспорт Na + из клетки в обмен на К + .

Возможны и другие «мишени», на которые могут действовать ЛС. Так, антацидные средства нейтрализуют соляную кислоту желудка, их применяют при повышенной кислотности желудочного сока (гиперацидном гастрите, язвенной болезни желудка).

Перспективной «мишенью» для ЛС являются гены. С помощью избирательно действующих ЛС возможно оказывать прямое влияние на функцию определенных генов.

2.2. ВИДЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Различают следующие виды действия: местное и резорбтивное, рефлекторное, прямое и косвенное, основное и побочное и некоторые другие.

Местное действие ЛВ оказывает при контакте с тканями в месте его нанесения (обычно это кожа или слизистые оболочки). Например, при поверхностной анестезии местный анестетик действует на окончания чувствительных нервов только в месте нанесения на слизистую оболочку. Для оказания местного действия ЛВ назначают в форме мазей, примочек, полосканий, пластырей. При назначении некоторых ЛВ в виде глазных или ушных капель также рассчитывают на их местное действие. Однако какое-то количество ЛВ обычно всасывается с места нанесения в кровь и оказывает общее (резорбтивное) действие. При местном применении ЛВ возможно также рефлекторное действие.

Резорбтивное действие (от лат. resorbeo - поглощаю) - эффекты, вызываемые ЛВ после всасывания в кровь или непосредствен- ного введения в кровеносный сосуд и распределения в организме. При резорбтивном действии, как и при местном, вещество может возбуждать чувствительные рецепторы и вызывать рефлекторные реакции.

Рефлекторное действие. Некоторые ЛВ способны возбуждать окончания чувствительных нервов кожи, слизистых оболочек (экстерорецепторы), хеморецепторы сосудов (интерорецепторы) и вызывать рефлекторные реакции со стороны органов, расположенных в удалении от места непосредственного контакта вещества с чувствительными рецепторами. Примером возбуждения экстерорецепторов

кожи эфирным горчичным маслом является действие горчичников. Лобелин при внутривенном введении возбуждает хеморецепторы сосудов, что приводит к рефлекторной стимуляции дыхательного и сосудодвигательного центров.

Прямое (первичное) действие ЛВ на сердце, сосуды, кишечник и другие органы развивается при непосредственном воздействии на эти органы. Например, сердечные гликозиды вызывают кардиотонический эффект (усиление сокращений миокарда) вследствие их непосредственного влияния на кардиомиоциты. Вызываемое же сердечными гликозидами повышение диуреза у больных с сердечной недостаточностью обусловлено увеличением сердечного выброса и улучшением гемодинамики. Такое действие, при котором ЛВ изменяет функцию одних органов, воздействуя на другие органы, обозначают как косвенное (вторичное) действие.

Основное действие. Действие, ради которого применяют ЛВ при лечении данного заболевания. Например, фенитоин обладает противосудорожными и антиаритмическими свойствами. У больного эпилепсией основное действие фенитоина - противосудорожное, а у больного с сердечной аритмией, вызванной передозировкой сердечных гликозидов, - антиаритмическое.

Все остальные (кроме основного) эффекты ЛВ, возникающие при его приеме в терапевтических дозах, расценивают как п о б о ч н о е действие. Эти эффекты часто бывают неблагоприятными (отрицательными) (см. главу «Побочное и токсическое действие лекарственных веществ»). Например, ацетилсалициловая кислота может вызвать изъязвление слизистой оболочки желудка, антибиотики из группы аминогликозидов (канамицин, гентамицин и др.) - нарушение слуха. Отрицательное побочное действие часто служит причиной ограничения применения того или иного ЛВ и даже исключения его из списка лекарственных препаратов.

Избирательное действие ЛВ направлено преимущественно на один орган или систему организма. Так, сердечные гликози- ды обладают избирательным действием на миокард, окситоцин - на матку, снотворные средства - на ЦНС.

Центральное действие развивается вследствие прямого влияния ЛВ на ЦНС. Центральное действие характерно для веществ, проникающих через ГЭБ. Для снотворных средств, антидепрессантов, анксиолитиков, средств для наркоза это основное действие. В то же время центральное действие может быть побочным (нежелательным).

Так, многие антигистаминные средства вследствие центрального действия вызывают сонливость.

Периферическое действие обусловлено влиянием ЛВ на периферический отдел нервной системы или на органы и ткани. Курареподобные средства (миорелаксанты периферического действия) расслабляют скелетные мышцы, блокируя передачу возбуждения в нервно-мышечных синапсах, некоторые периферические вазодилататоры расширяют кровеносные сосуды, действуя непосредственно на гладкомышечные клетки. Для веществ с основным центральным действием периферические эффекты обычно побочные. Например, антипсихотическое средство хлорпромазин вызывает расширение сосудов и снижение АД (нежелательное действие), блокируя периферические α-адренорецепторы.

Обратимое действие является следствием обратимого связывания ЛВ с «мишенями» (рецепторами, ферментами). Действие такого вещества можно прекратить путем его вытеснения из связи c «мишенью» другим ЛВ.

Необратимое действие возникает, как правило, в результате прочного (ковалентного) связывания ЛВ с «мишенями». Например, ацетилсалициловая кислота необратимо блокирует циклооксигеназу, поэтому действие препарата прекращается лишь после синтеза нового фермента.

Аффинитет и внутр активность лек.в-в

Для действия лекарства важны два качества: аффинитет и внутренняя активность. Аффинитет -- это сродство и прочность соединения между лекарством и объектом его действия, будьте рецептор или фермент. Внутренняя активность -- мера способности лекарства производить фармакологическое действие после связывания с рецептором. Лекарства, которые активируют рецепторы (агонисты), имеют оба свойства: они прочно связываются (проявляют аффинитет) со своими рецепторами, а комплекс «рецепторлекарство» вызывает желаемый ответ в соответствующей системе (имеет внутреннюю активность). Напротив, препараты, блокирующие рецепторы (антагонисты), связываются с ними прочно, но или имеют малую внутреннюю активность, или она совсем отсутствует, и их роль состоит в предотвращении взаимодействия молекул агониста с их рецепторами.Полный аганост-аганост,выз.максим эффект.частичный-частичный эффект.

Роль внутриклеточных посредников цАМФ

участвует в передаче таких гормональных эффектов как мобилизация энергетических запасов, задержка воды почками под контролем вазопрессина, поддержание кальциевого гомеостаза (регулируемого гормонами пара-щитовидных желез) и увеличение частоты и силы сокращений сердечной мышцы.Он регулирует также образование стероидов надпочечников и половых желез (в ответ на кортикотропин или фолликулости-мулирующий гормон), расслабление гладкой мускулатуры и многие другие эндокринные и нервные процессы. Повышенная концентрация цГМФ вызывает расслабление гладкой мускулатуры сосудов за счет опосредованного киназой механизма, итогом работы которого является дефосфорилирование легких цепей миозин. Инозитолтрифосфат и диацилглицерол (рис. 4-9). G-белок активирует фосфолипазу C, что приводит к отщеплению от фосфоинозитолбифосфата фосфолипидов клеточной мембраны двух вторых посредников - цитозольного ИТФ и мембранного диацилглицерола.* Ионы Ca2+ - распространённый второй посредник, регулирующий множество процессов (рассмотрены в разных главах учебника). Функционирование ионов Ca2+ в качестве вторых посредников возможно лишь при поддержании нормальной в цитозоле в крайне низких пределах (<100 нмоль/л).

Ло­кализации действия и механизмах действия лекарственных веществ (т.е. представ­ление о том, как, где и каким образом лекарственные вещества действуют в организме). К фармакодинамике относится также понятие о видах действия ле­карственных веществ.

2.1. ФАРМАКОЛОГИЧЕСКИЕ ЭФФЕКТЫ, ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Фармакологические эффекты - изменения функции органов и си­стем организма, вызываемые лекарственными веществами. К фармакологичес­ким эффектам лекарственных веществ относятся, например, повышение часто­ты сердечных сокращений, снижение артериального давления, повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжи­тельности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определенных, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты лекарственного вещества являются полезными - благодаря этим эффектам лекарственное вещество исполь­зуют в медицинской практике (основные эффекты), а другие эффекты, вызывае­мые лекарственным веществом, не используются и, более того, являются неже­лательными (побочные эффекты).

Для многих веществ известны места их преимущественного действия в орга­низме - т.е. локализация действия. Некоторые вещества преимуществен­но действуют на определенные структуры мозга (противопаркинсонические сред­ства, антипсихотические средства), известны вещества, которые в основном действуют на сердце (сердечные гликозиды).

Благодаря современным мртодическим приемам, можно определить локали­зацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гликозиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на Nа + ,К + -АТФ-азу мембран кардиомиоцитов (молекулярный уровень).

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают снижение артериального дав­ления, уменьшая синтез ангиотензина II (ингибиторы ангиотензин-конвертиру­ющего фермента), или блокируя поступление Са 2+ в гладкомышечные клетки (бло-каторы потенциалозависимых кальциевых каналов), или уменьшая выделение медиатора норадреналина из окончаний симпатических волокон (симпатолити-ки). Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

Фармакологические эффекты большинства лекарственных веществ вызываются их действием на определенные биохимические субстраты, так называемые «мишени».

К основным «мишеням» для лекарственных веществ относятся:


  • рецепторы;

  • ионные каналы;

  • ферменты;

  • транспортные системы.
Рецепторы

А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами

Рецепторы представляют собой функционально активные макромолеку­лы или их фрагменты (в основном, это белковые молекулы - липопротеины , гли-копротеины, нуклеопротеины и др.). При взаимодействии веществ (лигандов) с рецепторами возникает цепь биохимических реакций, которая приводит к опре­деленному фармакологическому эффекту. Рецепторы являются мишенями для эн­догенных лигандов (нейромедиаторов, гормонов, других эндогенных биологичес­ки активных веществ), но могут взаимодействовать и с экзогенными биологически активными веществами, в том числе с лекарственными веществами. Рецепторы взаимодействуют только с определенными веществами (веществами, имеющими определенную химическую структуру), т.е. обладают свойством избирательнос­ти, поэтому их называют специфическими рецепторами.

Рецепторы могут находиться в мембране клетки (мембранные рецепторы) или внутри клетки - в цитоплазме или в ядре (внутриклеточные рецепторы).

В мембранных рецепторах выделяют внеклеточный и внутриклеточный доме­ны. На внеклеточном домене имеются места связывания для лигандов (веществ, взаимодействующих с рецепторами).

Известны 4 вида рецепторов, первые три из которых являются мембранными рецепторами:


  1. Рецепторы, непосредственно сопряженные с ферментами. Поскольку внутри­клеточный домен этих рецепторов проявляет ферментативную активность, их на­зывают также рецепторы-ферменты, или каталитические рецепторы. Большин­ство рецепторов этой группы обладает тирозинкиназной активностью. При связывании рецептора с веществом происходит активация тирозинкиназы, кото­рая фосфорилирует внутриклеточные белки (по остаткам тирозина) и таким об­разом изменяет их активность. К этим рецепторам относятся рецепторы для ин­сулина, некоторых факторов роста и цитокинов. Известны рецепторы, непосредственно связанные с гуанилатциклазой (когда на эти рецепторы действует атриальный натрийуретический фактор, происходит активация гуанилатцикла-зы и в клетках повышается уровень цГМФ).

  2. Рецепторы, непосредственно сопряженные с ионными каналами, состоят из нескольких субъединиц, которые пронизывают мембрану и формируют (ок­ружают) ионный канал. При связывании вещества с внеклеточным доменом ре­цептора ионные каналы открываются, в результате чего изменяется проницае­мость клеточных мембран для различных ионов. К таким рецепторам относятся Н-холинорецепторы, ГАМК А -рецепторы, глициновые рецепторы , глутаматные рецепторы.
Н-холинорецептор состоит из 5 субъединиц, пронизывающих мембрану - при связывании двух молекул ацетилхолина с двумя а-субъединицами рецептора от­крывается натриевый канал и ионы Na + поступают в клетку, вызывая деполяри­зацию клеточной мембраны (в скелетных мышцах это приводит к мышечному сокращению).

ГАМК А -рецепторы непосредственно сопряжены с хлорными каналами. При взаимодействии рецептора с гамма-аминомасляной кислотой хлорные каналы от­крываются и ионы С1 поступают в клетку, вызывая гиперполяризацию клеточ­ной мембраны (это приводит к усилению тормозных процессов в ЦНС). Таким же образом функционируют глициновые рецепторы.

3) Рецепторы, взаимодействующие с G -белками. Эти рецепторы взаимодейству­
ют с ферментами и ионными каналами клеток через белки-посредники, так на­
зываемые G-белки - ГТФ (СТР)-связывающие белки. При действии вещества на
рецептор а-субъединица G-белка связывается с ГТФ. При этом комплекс G-бе-
лок-ГТФ вступает во взаимодействие с ферментами или ионными каналами. Как
правило, один рецептор сопряжен с несколькими G-белками, а каждый G-белок
может одновременно взаимодействовать с несколькими молекулами ферментов
или несколькими ионными каналами. Результатом такого взаимодействия явля­
ется усиление (амплификация) эффекта.

Хорошо изучено взаимодействие G-белков с аденилатциклазой и фосфоли-пазой С.

Аденилатциклаза - мембраносвязанный фермент, гидролизующий АТФ. В ре­зультате гидролиза АТФ образуется цАМФ, который активирует цАМФ-зависи-мую протеинкиназу, фосфорилирующую клеточные белки. При этом изменяется активность белков и регулируемых ими процессов. По влиянию на активность аденилатциклазы G-белки подразделяются на G s -белки, стимулирующие адени-латциклазу и G-белки, ингибирующие аденилатциклазу. Примером рецепторов, взаимодействующих с G s -белками, являются β 1 -адренорецепторы (опосредуют влияние симпатической иннервации), а примером рецепторов, взаимодействую­щих с Gj-белками - М 2 -холинорецепторы (опосредуют тормозное влияние на сер­дце парасимпатической иннервации). Эти рецепторы локализованы на мембране кардиомиоцитов.

При стимуляции β 1 -адренорецепторов повышается активность аденилат­циклазы и увеличивается уровень цАМФ в кардиомиоцитах - в результате ак­тивируется протеинкиназа, фосфорилирующая кальциевые каналы мембран кардиомиоцитов , через которые ионы Са 2+ поступают в клетку. При этом поступ­ление Са 2+ в клетку увеличивается, что приводит к повышению автоматизма синусного узла и увеличению частоты сердечных сокращений. Противополож­ные внутриклеточные эффекты возникают при стимуляции М 2 -холинорецепто-ров кардиомиоцитов (уменьшение автоматизма синусного узла и частоты сердеч­ных сокращений).

С фосфолипазой С взаимодействуют Gq-белки (активируют этот фермент). Примером рецепторов, сопряженных с Gq-белками, являются α1-адренорецепто-ры гладкомышечных клеток сосудов (опосредуют влияние на сосуды симпати­ческой иннервации). При стимуляции этих рецепторов повышается активность фосфолипазы С. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-дифос-фат клеточных мембран с образованием гидрофильного вещества инозитол-1,4,5-трифосфата, который взаимодействует с Са 2+ -каналами саркоплазматического ретикулума клетки и вызывает высвобождение Са 2+ в цитоплазму. При повы­шении концентрации Са 2+ в цитоплазме гладкомышечных клеток увеличивается скорость образования комплекса Са 2+ -кальмодулин, который активирует ки-назу легких цепей миозина (этот фермент фосфорилирует легкие цепи миозина). В результате облегчается взаимодействие актина с миозином и происходит сокращение гладких мышц сосудов.

Кроме М-холинорецепторов и адренорецепторов к рецепторам, взаимо­действующим с G-белками, относятся дофаминовые рецепторы, некоторые под­типы серотониновых рецепторов, опиоидные рецепторы, гистаминовые рецеп­торы и др.

Вещества, которые обладают аффинитетом, могут обладать внутренней актив­ностью.

Внутренняя активность - способность вещества при взаимодейст­вии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности лекарственные вещества раз­деляют на: агонисты и антагонисты.

Агонисты (от греч. agonistes - соперник, agon - борьба) или миметики - вещества, обладающие аффинитетом и внутренней активностью. При взаимодей­ствии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохими­ческих реакций и развиваются определенные фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максималь­но возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней ак­тивностью).

Антагонисты (от греч. antagonisma - соперничество, anti - против, agon -борьба) - вещества, обладающие аффинитетом, но лишенные внутренней актив­ности. Они связываются с рецепторами и препятствуют действию на рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому их также называ­ют блокаторами рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или уменьшением действия эндогенных агонистов дан­ных рецепторов. При этом в основном возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист М-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, по­вышает частоту сердечных сокращений.

Если антагонисты занимают те же рецепторы, что и агонисты, они могут вы­теснять друг друга из связи с рецепторами. Такой антагонизм называют конку­рентным, а антагонисты называются конкурентными антагонис­тами. Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ и их концентрации. В достаточно высоких концентра­циях даже вещество с более низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Конкурентные антагонисты часто используют для устранения токсических эффектов лекарственных веществ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частич­ные агонисты уменьшают эффекты полных агонистов и поэтому в клинической практике могут использоваться вместо антагонистов. Например, частичные аго­нисты β-адренорецепторов (окспренолол, пиндолол) также, как антагонисты этих рецепторов (пропранолол, атенолол), используются при лечении гипертоничес­кой болезни.

Если антагонисты занимают другие участки макромолекулы, не относящие­ся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентными антагонистами.

Некоторые лекарственные вещества сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как

агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом µ-, и агонистом δ-, и κ-опиоидных рецепторов.

Другие «мишени» для лекарственных веществ

Лекарственные вещества могут действовать и на другие «мишени», включая ионные каналы, ферменты, транспортные белки.

Одной из основных «мишеней» для лекарственных веществ являются потен­циал озависимые ионные каналы, которые избирательно проводят Na + , Ca 2+ , К + и другие ионы через клеточную мембрану. В отличие от рецептор-управляемых ион­ных каналов, которые открываются при взаимодействии вещества с рецептором (см. раздел «Рецепторы»), эти каналы регулируются потенциалом действия (от­крываются при деполяризации клеточной мембраны). Лекарственные вещества могут или блокировать потенциалозависимые ионные каналы и таким образом нарушать проникновение ионов по этим каналам через мембрану клетки, или активировать эти каналы, т.е. способствовать их открыванию и прохождению ионных токов. Многие лекарственные вещества, которые широко используются в медицинской практике, являются блокаторами ионных каналов.

Известно, что местные анестетики блокируют потенциалозависимые Na + -Ka-налы. К числу блокаторов Na + -каналов относятся и многие противоаритмичес-кие средства (хинидин, лидокаин, прокаинамид). Некоторые противоэпилепти-ческие средства (дифенин, карбамазепин) также блокируют потенциалозависимые Na + -каналы и с этим связана их противосудорожная активность. Б локаторы на­триевых каналов нарушают вхождение в клетку ионов Na + и таким образом пре­пятствуют деполяризации клеточной мембраны.

Весьма эффективными при лечении многих сердечно-сосудистых заболеваний (гипертонической болезни, сердечных аритмий, стенокардии) оказались блокато-ры Са 2+ -каналов (нифедипин, верапамил и др.). Ионы Са 2+ принимают участие во многих физиологических процессах: в сокращении гладких мышц, в генерации импульсов в синоатриальном узле и проведении возбуждения по атриовентрику-лярному узлу, в агрегации тромбоцитов и др. Блокаторы Са 2+ -каналов препятству­ют вхождению ионов Са 2+ внутрь клетки через потенциалозависимые каналы и вызывают расслабление гладких мышц сосудов, уменьшение частоты сокраще­ний сердца и атриовентрикулярной проводимости, нарушают агрегацию тромбо­цитов. Некоторые блокаторы кальциевых каналов (нимодипин, циннаризин) пре­имущественно расширяют сосуды мозга и оказывают нейропротекторное действие (препятствуют поступлению избыточного количества Са 2+ внутрь нейронов).

Среди лекарственных веществ имеются как активаторы, так и блокаторы по-тенциалозависимых К + -каналов.

Активаторы К + -каналов (миноксидил, диазоксид) нашли применение в каче­стве гипотензивных средств. Они способствуют открыванию К + -каналов и выхо­ду ионов К + из клетки - это приводит к гиперполяризации клеточной мембраны и уменьшению тонуса гладких мышц сосудов. В результате происходит снижение артериального давления.

Некоторые вещества, блокирующие потенциалозависимые К + -каналы (амио-дарон, соталол), используются при лечении аритмий сердца. Они препятствуют выходу К + из кардиомиоцитов, вследствие чего увеличивают продолжительность потенциала действия и удлиняют эффективный рефрактерный период.

АТФ-зависимые К + -каналы (эти каналы открываются под действием АТФ) в бета-клетках поджелудочной железы регулируют секрецию инсулина. Их блока-

да приводит к повышению секреции инсулина. Блокаторы этих каналов (произ­водные сульфонилмочевины) используются как противодиабетические средства.

Многие лекарственные вещества являются ингибиторами ферментов. Инги­биторы моноаминоксидазы (МАО) нарушают метаболизм (окислительное деза-минирование) катехоламинов (норадреналина, дофамина, серотонина) и повы­шают их содержание в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (ниаламид, пиразидол). Механизм дей­ствия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез простагландина Е 2 и про-стациклина, обладающих провосп^лительным действием. Ингибиторы ацетилхо-линэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхо-лина и повышают его содержание в синаптической щели. Эти препараты применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

Лекарственные средства могут действовать на транспортные системы (транс­портные белки), которые переносят молекулы некоторых веществ или ионы че­рез мембраны клеток. Например, трициклические антидепрессанты блокируют транспортные белки, которые переносят норадреналин и серотонин через преси-наптическую мембрану нервного окончания (блокируют обратный нейрональный захват норадреналина и серотонина). Сердечные гликозиды блокируют Na + , K + -АТФ-азу мембран кардиомиоцитов, которая осуществляет транспорт Na + H3 клетки в обмен на К + .

Возможны и другие «мишени», на которые могут действовать лекарственные вещества. Так, антацидные средства действуют на хлористоводородную кислоту желудка, нейтрализуя ее, и поэтому используются при повышенной кислотности желудочного сока (гиперацидном гастрите, язве желудка).

Перспективной «мишенью» для лекарственных средств являются гены. С по­мощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов.

2.2. ВИДЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Различают следующие виды действия: местное и резорбтивное, рефлекторное, прямое и косвенное, основное и побочное и некоторые другие.

Местное действие лекарственное вещество оказывает при контакте с тканями в месте его нанесения (обычно это кожа или слизистые оболочки). На­пример, при поверхностной анестезии местный анестетик действует на оконча­ния чувствительных нервов только в месте нанесения на слизистую оболочку. Для оказания местного действия лекарственные вещества назначают в форме мазей, примочек, полосканий, пластырей. При назначении некоторых лекарственных веществ в виде глазных или ушных капель также рассчитывают на их местное дей­ствие. Однако какое-то количество лекарственного вещества обычно всасывается с места нанесения в кровь и оказывает общее (резорбтивное) действие. При мес­тном нанесении лекарственных веществ возможно также рефлекторное действие.

Резорбтивное действие (от лат. resorbeo - поглощаю) - это эффекты, которые лекарственное вещество вызывает после всасывания в кровь или непос­редственного введения в кровоток и распределения в организме. При резорбтив-ном действии так же, как при местном вещество может возбуждать чувствитель­ные рецепторы и вызывать рефлекторные реакции.

Рефлекторное действие. Некоторые лекарственные вещества способ­ны возбуждать окончания чувствительных нервов кожи, слизистых оболочек (экстерорецепторы), хеморецепторы сосудов (интерорецепторы) и вызывать реф­лекторные реакции со стороны органов, расположенных в удалении от места не­посредственного контакта вещества с чувствительными рецепторами. Примером возбуждения экстерорецепторов кожи под действием эфирного горчичного мас­ла является применение горчичников при патологии органов дыхания, в резуль­тате чего рефлекторно улулшается трофика тканей. Хеморецепторы сосудов возбуждаются под действием лобелина (вводят внутривенно), что приводит к реф­лекторной стимуляции дыхательного и сосудодвигательного центров.

Прямое (первичное) действие лекарственного вещества на сердце, сосуды, кишечник и другие органы возникает при непосредственном воздействии его на клетки этих органов. Например, сердечные гликозиды вызывают кардио-тонический эффект (усиление сокращений миокарда) вследствие их непосред­ственного действия на кардиомиоциты. В то же время вызываемое сердечными гликозидами повышение диуреза у больных с сердечной недостаточностью обус­ловлено увеличением сердечного выброса и улучшением гемодинамики. Такое действие, при котором лекарственное вещество изменяет функцию одних орга­нов, воздействуя на другие органы, обозначается как косвенное (вторич­ное) действие.

Основное действие. Действие, ради которого применяется лекарствен­ное вещество при лечении данного заболевания. Например, фенитоин (дифенин) обладает противосудорожными и антиаритмическими свойствами. У больного эпилепсией основным действием фенитоина является противосудорожное, а у больного с сердечной аритмией, вызванной передозировкой сердечных гликози-дов - антиаритмическое.

Все остальные эффекты лекарственного вещества (кроме основного), которые возникают при его приеме в терапевтических дозах, расцениваются как проявле­ния побочного действия. Эти эффекты часто бывают неблагоприятными (отрицательными) (см. главу 5). Например, ацетилсалициловая кислота может вызвать изъязвление слизистой оболочки желудка , антибиотики из группы аминогликозидов (канамицин, гентамицин и др.) - нарушать слух. Отрицатель­ное побочное действие часто является причиной ограничения применения того или иного лекарственного вещества и даже исключения его из списка лекар­ственных препаратов.

Избирательное действие лекарственного вещества направлено пре­имущественно на один орган или систему организма. Так, сердечные гликозиды обладают избирательным действием на миокард, окситоцин - на матку, снотвор­ные средства - на ЦНС.

Центральное действие возникает вследствие прямого влияния лекар­ственного вещества на ЦНС (головной и спинной мозг). Центральное действие характерно для веществ, проникающих через гематоэнцефалический барьер. Для снотворных средств, антидепрессантов, анксиолитиков, средств для наркоза и не­которых других центральное действие является основным. В то же время цент­ральное действие может быть побочным (нежелательным). Так, многие антигис-таминные (противоаллергические) средства вследствие их центрального действия вызывают сонливость.

Периферическое действие обусловлено влиянием лекарственных ве­ществ на периферический отдел нервной системы или непосредственным дей­ствием на органы и ткани. Курареподобные средства (миорелаксанты перифери-

ческого действия) расслабляют скелетные мышцы, блокируя передачу возбужде­ния в нервно-мышечных синапсах, некоторые периферические вазодилататоры расширяют кровеносные сосуды, действуя непосредственно на гладкомышечные клетки. Для веществ с основным центральным действием периферические эф­фекты чаще всего являются побочными. Например, антипсихотическое средство хлорпромазин (аминазин) расширяет сосуды и вызывает снижение артериаль­ного давления (нежелательное действие), блокируя периферические α-адреноре-цепторы.

Обратимое действие является следствием обратимого связывания лекарственного вещества с «мишенями» (рецепторами, ферментами). Действие такого вещества можно прекратить путем его вытеснения из связи другим соеди­нением.

Необратимое действие возникает, как правило, в результате прочного (ковалентного) связывания лекарственного вещества с «мишенями». Например, ацетилсалициловая кислота необратимо блокирует циклооксигеназу тромбоци­тов, и функция этого фермента восстанавливается только после образования но­вых клеток.

1. Фармакокинетика включает в себя: 2.биотрансформацию лекарственных веществ в организме;

2. Отметить основной механизм всасывания лекарственных веществ: 3.пассивная диффузия;

3. Что соответствует понятию «активный транспорт»: 3.транспорт против градиента концентрации с затратой энергии

4. Что означает термин «биодоступность»: 3.количество неизмененного вещества, которое достигло плазмы крови, относительно исходной дозы препарата;

5. Объем распределения лекарств отражает: 4.гипотетический объем жидкости, в котором распределяется лекарство.

6. Объем распределения оказывается низким, если: 1.вещество накапливается в плазме крови;

7. Что входит в понятие «Биотрансформация»: 3.комплекс физико-химических и биохимических превращений лекарственного вещества, направленных на выведение его из организма;

8. Метаболическая биотрансформация это: 2.превращение вещества за счет окисления, восстановления, гидролиза;

9. Какой из процессов протекает в фазу биотрансформации, которая называется конъюгацией? 1.ацетилирование;

10. Какой параметр фармакокинетики обозначается как «Т1/2»: 2.период полувыведения (полужизни, полуэлиминации) веществ;

11. Макролидный антибиотик, характеризующийся наибольшим показателем клиренса:

4.эритромицин.

12. Повышает скорость синтеза цитохрома Р-450 (вызывает индукцию ферментов):

1.рифампицин;

13. Снижает скорость синтеза цитохрома Р-450 (угнетает активность ферментов):

3.эритромицин;

14. Генетически детерминированная атипичная форма псевдохолинэстеразы обусловливает повышение активности и длительности действия:

1.дитилина;

15. Клиренс какого противоаритмического средства является наименьшим?

2.амиодарон

16. Через какое время после начала постоянной внутривенной инфузии дофамина (время полувыведения около 2 минут) установится его постоянная концентрация в плазме крови?

3. 10 минут;

17. Дозы для приема внутрь и внутривенного введения одинаковы для:

3.метронидазола;

18. Пипекуроний (высоко ионизированное соединение):

3.остается в экстраклеточном пространстве;

19. Указать вещество, метаболизм которого подвержен кинетике нулевого порядка:

20. Какое из лекарственных средств является пролекарством:

3.леводопа;

Фармакодинамика.

1. Что включает в себя понятие фармакодинамика?

4. биологические эффекты лекарственных средств.

2. Действие веществ, развившееся после его поступления в системный кровоток, называется:

2.резорбтивным;

3. Какой ответ наиболее соответствует термину «рецептор»?

3.активные группировки макромолекул субстратов, с которыми лекарственное вещество взаимодействует;

4. Что означает термин «аффинитет» ?

2.сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество – рецептор»;

5. Что называется внутренней активностью вещества?

2.способность вещества при взаимодействии с рецептором стимулировать его и вызывать биологический эффект

6. Вещества, обладающие аффинитетом и внутренней активностью, называют:

1. агонистами;

7. Как называется действие вещества, если оно взаимодействует только с функционально однозначными рецепторами определенной локализацией и не влияют на другие рецепторы?

4.избирательное.

8. Как называется накопление в организме лекарственных веществ, при повторном его введении?

4.материальная кумуляция.

9. Как называется снижение эффективности действия вещества при повторном его введении?

3.толерантность (привыкание);

10. Как называется явление, когда отмена препарата вызывает психические и соматические нарушения, связанные с нарушениями функций многих систем организма вплоть до смертельного исхода?

3.абстиненция;

11. Частичный агонист рецепторов по сравнению с полным агонистом характеризуется:

3.меньшей внутренней активностью;

12. Какой тип межмолекулярной связи обусловливает необратимую связь лекарственного вещества с рецептором:

4.ковалентная;

13. Полный агонист рецепторов по сравнению с частичным агонистом характеризуется:

3.большей внутренней активностью;

14. Как частичные агонисты рецепторов влияют на действие полных:

2.ослабляют;

15. Какой вторичный посредник обеспечивает формирование клеточного ответа на действие агониста бета-адренорецепторов:

16. Для какого лекарственного вещества первичная фармакологическая реакция обусловлена угнетением активности фермента:

4.прозерин;

17. Для какого лекарственного вещества первичная фармакологическая реакция обусловлена снижением проницаемости потенциалзависимых ионных каналов:

2.дифенин;

18. Для какого лекарственного вещества первичная фармакологическая реакция обусловлена угнетением процесса облегченной диффузии:

4.дихлотиазид;

19. Для какого лекарственного вещества первичная фармакологическая реакция обусловлена снижением проницаемости медиаторзависимых (хемочувствительных) ионных каналов:

5.пипекуроний.

20. Для какого лекарственного вещества первичная фармакологическая реакция обусловлена влиянием на процессы транскрипции ДНК:

3.преднизолон

Лекарственные средства, влияющие на афферентную иннервацию.

1. К средствам, стимулирующим афферентную иннервацию, относится:

2. К вяжущим средствам относится:

3.К обволакивающим средствам относится:

3.слизь из крахмала;

4. К адсорбирующим средствам относится:

4.уголь активированный.

5. Выберите местноанестезирующее средство:

1.бензокаин (анестезин);

6. Препятствуют раздражению окончаний чувствительных нервов, коагулируя поверхностные белки:

2.вяжущие средства

7. Местноанестезирующие средства нарушают генерацию и проведение возбуждения в чувствительных нервах, так как:

4.препятствуют деполяризации мембраны.

8. При пептических язвах желудка внутрь применяют:

1.висмута нитрат основной.

9. Преимущественно для инфильтрационной анестезии применяют средство:

3.прокаин (новокаин);

10. К растворам местных анестетиков добавляют адреналин, так как при этом:

2.удлиняется анестезирующее действие;

11. Механизм действия местных анестетиков обусловлен:

1.блоком натриевых каналов и невозможностью деполяризации мембраны;

12. К группе амидов относится:

3.лидокаин;

13. Только для поверхностной анестезии используется:

4.бензокаин (анестезин).

14. Наиболее аллергогенным местным анестетиком является:

3.прокаин (новокаин);

15. Местые анестетики применяют в комбинации с адреналином, т.к.:

2.замедляется всасывание анестетика и усиливается местноанестезирующее действие;

16. Для всех видов анестезии применяют:

4.лидокаин.

17. Механизм действия вяжущих средств обусловлен:

2.коагуляцией белков и образованием пленки, предохраняющей окончания чувствительных нервов от раздражения;

18. К адсорбирующим средствам относится:

2.уголь активированный;

19. Органическим вяжущим средством является:

20. К раздражающим средствам относится все кроме:

3.висмута нитрат основной;

Холинопозитивные лекарственные средства.

1. Холиномиметики являются:

1.агонистами холинорецепторов;

2. Укажите холиномиметик:

3.ацеклидин;

3. К какой группе относится ацеклидин?

5.холиномиметики.

4. Отметить, что характерно для прозерина (неостигмина метилсульфата):

1.повышает тонус кишечника и мочевого пузыря;

5. Что характерно для ацеклидина?

1.снижает внутриглазное давление

6. Антихолинэстеразные лекарственные средства применяют при:

2.миастении

7. Какой препарат блокирует ацетилхолинэстеразу?

3.прозерин (неостигмина бромид);

8. Какой препарат используют для лечения миастении?

3.прозерин;

9. Какой препарат противопоказан при бронхиальной астме?

4.ацеклидин.

10. При каком заболевании противопоказаны антихолинэстеразные средства?

4.эпилепсия.

11. Избирательный М-холиномиметик (агонист мускариновых холинорецепторов):

2.пилокарпин;

12. М-холиномиметики, в отличие от ингибиторов ХЭ, не оказывают влияния на холинергическую синаптическую передачу:

1.в нервно-мышечном синапсе

13. Действие агониста М-ХР блокируется:

1.атропином

14. Пилокарпин вызывает развитие спазма аккомодации потому, что он повышает тонус:

3.цилиарной мышцы.

15. Холиномиметики снижают ВГД потому, что они повышают тонус:

1. круговой мышцы радужной оболочки;

16. Почему галантамин (третичный амин) превосходит прозерин (четвертичное аммониевое соединение) в действии на ЦНС :

(> значения Vd);

17. Неостигмин (прозерин) используется для лечения миастении потому, что он улучшают холинергическую синптическую передачу:

2. вмионевральном соединении;

18. Антихолинэстеразные средства используются для лечения послеоперационной атонии ЖКТ и мочевого пузыря потому, что они повышают эффективность холинергической синаптической передачи:

19. М-холиномиметики используются для лечения послеоперационной атонии ЖКТ и мочевого пузыря потому, что они имитируют действие эндогенного агониста М-ХР (ацетилхолина):

3.спостганглионарных холинергических волокон на клетки эффекторных органов.

20. Холиномиметики противопоказаны при:

1. бронхиальной астме;

Холинонегативные лекарственные средства.

1. Холиноблокаторы являются:

4.антагонистами холинорецепторов.

2. Укажите холиноблокаторы:

2.атропина сульфат;

3. К какой фармакологической группе относится атропина сульфат?

5.холиноблокаторы.

4. Отметить, что характерно для бензогексония:

2.снижает общее периферическое сопротивление сосудов;

5. Что характерно для атропина сульфата?

4.устраняет брадикардию.

6. Ганглиоблокаторы применяют при:

1.гипертоническом кризе;

7. Какой препарат является миорелаксантом деполяризующего действия?

1.дитилин (суксаметоний);

8. Какой препарат используют для премедикации?

1.атропина сульфат;

9. Какой препарат противопоказан при глаукоме?

2.атропина сульфат

10. Какой препарат применяют для купирования почечной колики?

2.атропина сульфат;

    М-холиноблокатор :

    М-холиноблокаторы вызывают развитие мидриаза:

1.снижая тонус круговой мышцы радужной оболочки;

    Почему атропин (третичный амин) превосходит метацин (четвертичное аммониевое соединение) в действии на ЦНС:

2.лучше распределяется по организму(> значения Vd);

    М-холиноблокаторы используются для лечения:

4.язвенной болезни желудка.

    М-холиноблокаторы противопоказаны при:

3.глаукоме;

    Ганглиоблокатор :

2.пентамин;

    Ганглиоблокаторы используются для лечения:

    гипертензивного криза;

    Нежелательный побочный эффект ганглиоблокаторов :

3.ортостатический коллапс;

    Миорелаксант:

3.пипекуроний;

    Для прекращения действия конкурентных миорелаксантов применяется:

2.неостигмин (прозерин);

Адренопозитивные лекарственные средства.

Вещества, которые обладают аффинитетом, могут иметь внутреннюю активность.

Внутренняя активность – способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности лекарственные вещества подразделяют на агонисты и антагонисты рецепторов.

Агонисты (от греческого agonistes - соперник, agon – борьба) или миметики – вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т. е. вызывают изменение конформации рецепторов, в результате чего возникает цепь биохимических реакций и развиваются определенные фармакологические эффекты.

Полные агонисты , взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).

Антагонисты (от греческого antagonisma – соперничество, anit – против, agon – борьба) – вещества, обладающие аффинитетом, но лишенные внутренней активности. Связываясь с рецепторами, они препятствуют действию на эти рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому антагонисты также называют блокаторами рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или ослаблением действия эндогенных агонистов данных рецепторов. При этом возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист М-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, повышает частоту сердечных сокращений.

Если антагонисты занимают те же места связывания, что и агонисты, они могут вытеснять друг друга из связи с рецепторами. подобный вид антагонизма обозначают как конкурентный антагонизм , а антагонисты называют конкурентными антагонистами . Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ к данному рецептору и их концентрации. В достаточно высоких концентрациях даже вещество с низким аффинитетом может вытеснять вещество с более высоким аффинитетом из связи с рецептором. Поэтому при конкурентном антагонизме эффект агониста может быть полностью восстановлено при увеличении его концентрации в среде. Конкурентный антагонизм часто используют для устранения токсических эффектов лекарственных веществ.



Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частичные агонисты уменьшают их эффекты и поэтому в клинической практике могут быть использованы вместо антагонистов. Например, частичные агонисты b-адренорецепторов (пиндолол) так же, как и антагонисты этих рецепторов (пропранолол, атенолол) применяют при лечении гипертонической болезни.

Неконкурентный антагонизм развивается, когда антагонист занимет так называемые аллостерические места связывания на рецепторах (участки макромолекулы, не являющиеся местами связывания агониста, но регулирующие активность рецепторов). Неконкурентные антагонисты изменяют конформацию рецепторов таким образом, что они теряют способность взаимодействовать с агонистами. При этом увеличение концентрации агониста не может привести к полному восстановлению его эффекта. Неконкурентный антагонизм также имеет место при необратимом (ковалентном) связывании вещества с рецептором.

Некоторые лекарственные вещества сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как агонисты – антагонисты (например, буторфенол – антагонист μ и агонист к опиоидных рецепторов).

Другие "мишени" для лекарственных веществ

К другим "мишеням" относят ионные каналы, ферменты, транспортные белки.

Ионные каналы . Одной из основных "мишеней" для лекарственных веществ являются потенциалзависимые ионные каналы, избирательно проводящие Na + , Са 2+ , К + и другие ионны через клеточную мембрану. В отличие от рецептор-управляемых ионных каналов, открываемых при взаимодействии вещества с рецептором, эти каналы регулируются потенциалом действия (открываются при деполяризации клеточной мембраны). Лекарственные вещества могут или блокировать потенциалзависимые ионные каналы и таким образом нарушать поступление через них ионов, или активировать, т. е. способствовать прохождению ионных токов. Большинство лекарственных веществ блокируют ионные каналы.

Местные анестетики блокируют потенциалзависимые Na + -каналы. К числу блокаторов Na + -каналов относятся и многие противоаритмические средства (хинидин, лидокаин, прокаинамид). Некоторые противоэпилептические средства (фенитоин, карбамазепин) также блокируют потенциалзависимые Na + -каналы, и с этим связана их противосудорожная активность. Блокаторы натриевых каналов нарушают вхождение в клетку Na + и таким образом препятствуют деполяризации клеточной мембраны.

Весьма эффективными при лечении многих сердечно-сосудистых заболеваний (гипертонической болезни, сердечных аритмий, стенокардии) оказались блокаторы Са 2+ -каналов (нифедипин, верапамил и др.). Ионы кальция принимают участие во многих физиологических процессах: в сокращении гладких мышц, генерации импульсов в синусно-предсердном узле и проведении возбуждения по предсердно-желудочковому узлу, агрегации тромбоцитов и др. Блокаторы медленных кальциевых каналов препятствуют вхождению ионов кальция внутрь клетки через потенциалзависимые каналы и вызывают расслабление гладких мышц сосудов, уменьшение частоты сокращений сердца и АВ-проводимости, нарушают агрегацию тромбоцитов. Некоторые блокаторы кальциевых каналов (нимодипин, циннаризин) преимущественно расширяют сосуды мозга и оказывают нейропротекторное действие (препятствуют поступлению избыточного количества ионов кальция внутрь нейронов).

В качестве лекарственных средств используются как активаторы, так и блокаторы калиевых каналов. Активаторы калиевых каналов (миноксидил) нашли применение в качестве антигипертензивных средств. Они способствуют выходу ионов калия из клетки, что приводит к гиперполяризации клеточной мембраны и уменьшению тонуса гладких мышц сосудов. В результате происходит снижение артериального давления. Лекарственные вещества, блокирующие потенциалзависимые калиевые каналы (амиодарон, соталол), нашли применение при лечении аритмий сердца. Они препятствуют выходу ионов калия из кардиомиоцитов, вследствие чего увеличивают продолжительность потенциала действия и удлиняют эффективный рефрактерный период (ЭРП). Блокада АТФ-зависимых калиевых каналов в b-клетках поджелудочной железы приводит к повышению секреции инсулина; блокаторы этих каналов (производные сульфонилмочевины) применяют как противодиабетические средства.

Ферменты. Многие лекарственные вещества являются ингибиторами ферментов. Ингибиторы МАО нарушают метаболизм (окислительное дезаминирование) катехоламинов (норадреналина, дофамина, серотонина) и повышают их содержание в ЦНС. На этом принципе основано действие антидепрессантов – ингибиторов МАО (например, ниаламида). Механизм действия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез протагландинов Е 2 и I 2 и развивается противовоспалительное действие. Ингибиторы ацетилхолинэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхолина и повышают его содержание в синаптической щели. Препараты этой группы применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря и скелетных мышц).

Тарнспортные системы Лекарственные вещества могут действовать на транспортные системы (транспортные белки), переносящие молекулы некоторых веществ или ионы через мембраны клеток. Например, трициклические антидепрессанты блокируют транспортные белки, которые переносят норадреналин и серотонин через пресинаптическую мембрану нервного окончания (блокируют обратный нерональный захват норадреналина и серотонина). Сердечные гликозиды блокируют Na + -,К + -АТФазу мембран кардиомиоцитов, осуществляющую транспорт Na + из клеток в обмен на К + .

Возможны и другие "мишени", на которые могут действовать лекарственные средства. Так, антацидные средства нейтрализуют соляную кислоту желудка, их применяют при повышенной кислотности желудочного сока (гиперацидном гастрите, язвенной болезни желудока).

Перспективной "мишению" для лекарственных средств являются гены. С помощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов.